Principles and Applications of Modern
DNA Sequencing

FEEB GU4055

Session 4: Scientific Python

Today's topics

1. review of topics thus far.
2. file 1/O

3. fastq to fasta

4. genome annotation

5. introducing numpy and pandas

Python Dictionaries

A look-up table. Store values associated with look-up keys. Very efficient data

structure for storing and retrieving data.

print (adict |

Comments are a key part of writing good code

import random

integer list = [random.randint (0, 10) for 1 in range (1000)]

counter = {}

for item 1n integer list:

1f 1tem not 1n counter:

counter[item]

Python Advanced

You have now learned all of the core object types in Python. From these simple
objects more complex Python object can be built. Thousands of complex software

tools have been developed from creatively combining these objects with Python
coding routines.

a integer =

b float = 0.2345

c string = "a string"

d list = ["a", "list"™, "of", "strings"]

e tuple = ("a", "tuple", "of", "strings")

f dict = {"a key": ["and value 1in a dictionary"]}

File 1/O: bash to Python

$Sbash

wget http://eaton-lab.org/data/40578.fastg.gz -g -0 40578.fastqg.gz

oS
gzip
requests

"https://eaton-lab.org/data/40578.fastg.gz"

with gzip.open("40578.fastg.gz", 'wb') as ffile:

ffile.write(requests.get (urll) .content)

File 1/O: file objects

Reading and writing files in Python is done through File objects. You first create an

object, then use it is some way (functions), and finally close it.

ofile = open("./datafiles/helloworld.txt",

ofile.write("hello world")

ofile.close ()

File 1/O: file objects

The term 'with' creates context-dependence within the indented block. The object
can have functions that are automatically called when the block starts or ends. For

an open file object the block ending calls .close(). This often is simpler better code.

with open("./helloworld.txt", 'w') as ofile:

ofile.write("hello world")

File 1/O: file objects

To reiterate, these two code blocks are equivalent.

ofile = open("./helloworld.txt",

ofile.write("hello world")

ofile.close ()

with open("./helloworld.txt", 'w') as ofile:

ofile.write("hello world")

File 1/O: file objects

Compression or decompression is as simple as writing or reading using a File object
from a compression library (e.g., gzip or bz2).

import gzip

ofile = gzip.open("./helloworld.txt", 'wb')

ofile.write(b"hello world")

ofile.close ()

10

File 1/O: reading

Open a file and call .read() to load all of the contents at once to a string or bytes

object.

fobj = open("./data.txt", 'r'")

fdata = fobj.read()

fobj.close ()

print (fdata[:500])

11

File 1/O: reading

Open a file and call .read() to load all of the contents at once to a string or bytes

object.

fobj = gzip.open("./data.fastg", 'r')

fdata = fobj.read() .decode ()

fobj.close ()

print (fdata[:500])

12

File 1/O: reading

Once again, the 'with' context style of code is a bit more concise.

with gzip.open("./data.fastqg", 'r') as fobj:

fdata = fobj.read() .decode ()
print (fdata[:50017])

13

File 1/O: file paths

File paths are an important concept to master in bioinformatics. Be aware of the
absolute path to where you are, and where the files you want to operate on are

located, and understand how relative paths can also point to these locations.

abspath (".")

join ("/home/deren", "filel.txt")

basename ("/home/deren/file.txt")

exlists ("badfilename.txt")

14

The FASTA file format

The fasta format is commonly used to store sequence data. We learned about it in
our first notebook assignment and also saw some empirical examples representing
full genomes. The delimiter ">" separates sequences. Files typically end in .fasta, .fna,

(DNA specific) or .faa (amino acids specific).

>mus musculus gene A

AGTCAGTCAGCGCTAGTCATAACACGCAAGTCAATATATACGACAGCAGCTAGCTACTTCGACA
CAGTCGATCAGCTAGCTGACTACTATATATTTTTATATGTAAAAAAAACATATGCGCGCTTTTG
GGGGAGTATTTTATGCATATCATGCAGCATATAGGTAGCTGTGCATGCTGCTAGCACGATCGTA
CATGCTAGCTAGCTAGCTAGCTAGCTAGCTGACTAGCTAGTGCTAGCTAGCTATATATATATAT

>mus musculus gene B
ACGTACGTACGTACGTAGCTAGCTACATGCTAGCATGCATGCTAGCTAGCTATATATAGCCCCC
CAGCGGGGGGCGTCATGCATAAAAAAAAAAAGCATCATGCCGCGCCCCTAGCGCGTATTTTCTT

15

https://en.wikipedia.org/wiki/FASTA_format

The FASTA file format

Challenge: Write code to combine a fasta header (e.g., "> sequence name") and a
random sequence of DNA to a create valid fasta data string. Then write the data to a

file and save it as "datafiles/sequence.fasta".

def random dna (length) :

dna = "".join([random.choice ("ACGT") for i 1in range (length)])

return dna

dna = random dna (20)

fasta = "> sequence name\n" + dna

with open("./datafiles/sequence.fasta", 'w') as out:

out.write (fasta)

16

The FASTQ file format

The fastg format is commonly used to store sequenced read data. It differs from
fasta in that it contains quality (confidence) scores. Each sequenced read represented

by four lines, and a single file can contain many millions of reads.

@SEQ ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+
L (((()) $33+4) (33%3%) . 1***—4%1 1)) **55CCF>>>>>>CCCCCCCE5

17

https://en.wikipedia.org/wiki/FASTQ_format

FASTQ quality scores

Quality scores are encoded using ASCI| characters, where each character can be

translated into an integer score that is log10 probability the base call is incorrect:
Q = —10 * logio(P)

g scores [ord (1) for i in phred]

J_scores [ord (1) - 33 for 1 in phred]

print (g scores)

18

FASTQ quality scores

Quality score is an integer log10 probability the base call is incorrect:
Q = —10 * logio(P)

import math
print (=10 * math.logl0(0.001))

probs = [10 ** (g / -10) for g in g scores]

print (probs)

30.0
(.0o001, 0.0001, 0.0001, 0.0001, 0.0001, 0.00015848931924611142,

19

FASTQ conversion

Now that you understand reading and writing files, working with string and list

objects, and the format of fastg and fasta file formats, you are prepared to write a
function to convert from one to the other.

def fastgZ2fasta(in fastqg, out fasta):

wrwew

(1) Write a function;
(2) read 'datafiles/40578.fastg.gz' from disk;
(3) convert to fasta format; and

(4) write result to a file

LA AN

with gzip.open(in fastg, 'rb') as indata:

fastg = indata.read () .decode ()

fastadata

20

Dictionaries in action: translation

GENCODE =
"ATA' :
"ACA':
"AAC':
'"AGC':
'"CTA':
"CCA':
'"CAC':
'"CGA':
'"GTA':
'"GCA':
'"GAC':
'"GGA' :
'"TCA':
'"TTC':
'"TAC':

How are genes identified?

Genome annotation is the process of labeling genomic elements, including genes and
their parts. Your reading by Yandell and Ence introduces the concepts of genome

annotation, a process that has evolved rapidly over the last decade.

We used a translation dictionary in Python to search a string of DNA for start and
stop codons to an open reading frame (ORF) : a region that could be translated. This

was a relatively crude approach.

Modern approaches use RNA-seq, in which RNA is extracted and reverse-
transcribed into cDNA -- the subset of the genome matching to coding genes -- that
Is then sequenced and mapped to a reference genome. Thus we only examine a

subset of the genome for annotation.

22

https://en.wikipedia.org/wiki/RNA-Seq

Genome annotations In practice

Annotated genomes of model organisms, like humans and Drosophila, are works in
progress. However, they are considered to be highly accurate in comparison to most
other genomes that have been sequenced recently. This is because their genomes
are assembled better (more contiguous), and because they are able to build upon

decades of experimental work to infer the function of genes.

Your next assignment will cover assembly statistics, like N50, what it means, how to

calculate it, and what type of values represent good versus poor genome assemblies.

23

Genome annotations Iin practice

1. Repeat mask the genome to prevent data mapping to repetitive regions (e.g.,
transposons), which also have open reading frames (ORFs) and can interfere with the

identification of other ORFs associated with genes.

2. Map RNA-seq reads to a reference (e.g., using TopHat) and assemble transcript

contigs from overlapping mapped reads (e.g., using Cufflinks).

3. ab initio gene prediction: little or no external evidence. Find the most likely coding
sequence (CDS) in ORFs. Model parameters (e.g., GC content, intron lengths) affect
accuracy, and vary among organisms. Additional evidence includes RNA-seq and

Protein sequence data to identify introns/exons and UTRs.

4. Annotation: combining evidence from multiple data types or analyses.

24

-
Box 2 | Gene prediction versus gene annotation

Gene prediction
(SNAP)

(Exonerate) :

mRNAorESTevidence I I [N

Protein evidence | | | |

(BLASTX) | | | |

Gene annotation resulting Start codon Stop codon

from synthesizing all | M

available evidence

(two alternative splice forms) Ir ‘-_:I

T
226,500

3'UTR

T T T
228,000 227,500 227,000

bp

T T T
229,500 229,000 228,500

5'UTR

Although the terms ‘gene prediction’ and ‘gene annotation’ are often used as if they are synonyms, they are not. With a
few exceptions, gene predictors find the single most likely coding sequence (CDS) of a gene and do not report untranslated
regions (UTRs) or alternatively spliced variants. Gene prediction is therefore a somewhat misleading term. Amore
accurate description might be ‘canonical CDS prediction’.

Gene annotations, conversely, generally include UTRs, alternative splice isoforms and have attributes such as evidence
trails. The figure shows a genome annotation and its associated evidence. Terms in parentheses are the names of
commonly used software tools for assembling particular types of evidence. Note that the gene annotation (shown in blue)
captures both alternatively spliced forms and the 5" and 3'UTRs suggested by the evidence. By contrast, the gene
prediction that is generated by SNAP (shown in green) isincorrect as regards the gene’s 5’ exons and start-of-translation
site and, like most gene-predictors, it predicts only a single transcript with no UTR.

Gene annotation is thus a more complex task than gene prediction. A pipeline for genome annotation must not only
deal with heterogeneous types of evidence in the form of the expressed sequence tags (ESTs), RNA-seq data, protein
homologies and gene predictions, but it must also synthesize all of these data into coherent gene models and produce
an output that describes its results in sufficient detail for these outputs to become suitable inputs to genome browsers
and annotation databases.

25

CJ Respond at PollEv.com/dereneaton004

https://pollev.com/dereneaton004

Two more Python object: Arrays and DataFrames

numpy and pandas are the reason Python is popular for data science.

import numpy as np

arr = np.array ([0, 5, 2, 1, 14])

import pandas as pd
df = pd.DataFrame ({

[O 5 2 1 14]
columnl
0
5
2
1
14

A short numpy intro

numpy arrays are super efficient data structures. All data in an array is of the same
type (int8, inté4, floaté4) which makes computations fast. In addition, is performs

broadcasting on arrays and includes many numerical functions.

.Zzeros (100)

.zeros ((10, 10), dtype=np.int8)

28

A short numpy intro

numpy arrays are super fast and efficient. All data is of the same 'type' (int8, int64,

floaté4). Functions can be 'broadcast’, and many numerical functions are supported.

narr = np.arange (10) .reshape((5, 2))
print (narr.shape)

print (narr)

A short numpy intro

numpy arrays are super fast and efficient. All data is of the same 'type' (int8, int64,

floaté4). Functions can be 'broadcast’, and many numerical functions are supported.

np.arange (10) + np.arange (10)

larr list (range (10)) + list (range(10))

print (xarr)

print (larr)

8 10 12 14 16 18]
5/ 6/ 7! 8/ 9/

30

A short numpy intro

numpy arrays are super fast and efficient. All data is of the same 'type' (int8, int64,

floaté4). Functions can be 'broadcast’, and many numerical functions are supported.

xarr = np.zeros(1000) .reshape((10, 10, 10))

print (xarr[0])

[O.
[O.
[O.
[O.
[O.
[O.
[O.
[O.
[O.
[O.

O O O O O oo oo o o o
O O O O O o oo o o o
OO O O O O oo oo o o o
O O O O O oo oo o o o
O O O O O o oo o o o
O O O O O oo oo o o o
O O O O O o oo o o o
O O O O O o oo o o o
O O O O O oo oo o o o

A short numpy intro

Many useful functions/modules in numpy, like .random.

np.random.normal (0O,

array([-0.35549967,
-1.38097489,

-2.1416518
-0.2578635

4

4

-0.49230544,
-1.60208958,

1.47456753,
-0.45677291,

1.313864906,
0.91109757])

32

A short pandas intro

DataFrames are tables that can be selected by row or column names or indices.

data = pd.DataFrame ({
np.random.normal (O, 1, 10),
np.random.choice (list (), 10),

np.random.randint (0, 5, 10),

randval randbase
.602565
.0657427
.907259
. 775811
.601185
.155603

A short pandas intro

Read/write data to and from tabular formats (e.g., CSV).

pd.read csv (

pd.read csv (

4
Iris—-setosa
Iris—-setosa
Iris—-setosa
Iris—-setosa

Iris—-setosa

4

header=None)

34

A short pandas intro

Indexing rows, columns, or cells. Similar to numpy or Python lists you can use

indexing with .iloc

35

To

mask

A short pandas intro

iIndex by row or column names use .loc.

.loc[:, "randint"]

= data.loc|[:, "randint"] > 1

.1loc[mask, :]

36

Assignment

Your assignment will introduce numpy and pandas for operating on data related to
genome annotations. You will calculate genome N50 using numpy, and you will read
and operate on a GFF file using pandas. Revisit the Yandell paper as needed.

Two assigned short chapters: Chapters 2,3 of the Python Data Science Handbook.
One assigned primary reading: “OrthoDB: A Hierarchical Catalog of Animal, Fungal

and Bacterial Orthologs.” Nucleic Acids Research 41 (Database issue): D358-65.
https:/doi.org/10.1093/nar/gks1116

37

