
Principles and Applica�ons of Modern Principles and Applica�ons of Modern
DNA SequencingDNA Sequencing

EEEB GU4055EEEB GU4055

Session 2: PythonSession 2: Python

1

Today's topicsToday's topics

1. review notebook assignments (Python Intro)

2. objects, types, variables, return, print

3. iterables: strings and lists

4. condi�onal statements

5. wri�ng func�ons

2

Notebook 2.0: Intro to PythonNotebook 2.0: Intro to Python

Every language has its idiosyncrasies. Whether you've never seen Python before, or
you're more familiar with another programming language like R, it takes some �me to
become familiar with the format and rules of any specific language and why they
ma�er.

This primer on Python and bash is intended to introduce and explain some of the
reasoning behind these concepts. We will con�nue to reinforce how and why the
code is wri�en the way it is throughout the course.

3

Python objectsPython objects

Everything in Python is an object. Different types of objects have different features
associated with them. This can include func�ons to query or modify aspects of the
object, or ways of returning stats or details about it.

Object-oriented languages are designed for this purpose: connec�ng func�ons to the
objects they are meant to operate on. It is an organiza�onal structure to help
users/coders write cleaner code that is easier to use.

4

Python objectsPython objects
The main object types in Python can be created in one of two ways: using a
shorthand syntax or explicit func�on call.

 # Create objects of various types using their type conventions

 "a string"

 ["a", "list", "of", "strings"]

 ("a", "tuple", "of", "strings")

 {"a key": ["and value in a dictionary"]}

 # Or, we can explicitly use the object type function to creating objects

 str("Columbia")

 list((1, 2, 3, 4, 5))

 tuple("apple", "banana", "orange")

 dict([("a", 3), ("b", 4), ("c", 5)])

5

Crea�ng variables to store objectsCrea�ng variables to store objects
A created object disappears instantly upon crea�on unless you store it to a variable.

 # Create objects of various types using their type conventions

 a = "a string"

 b = ["a", "list", "of", "strings"]

 c = ("a", "tuple", "of", "strings")

 d = {"a key": ["and value in a dictionary"]}

 # Or, we can explicitly name the object type as a function

 a = str("Columbia")

 b = list((1, 2, 3, 4, 5))

 c = tuple("apple", "banana", "orange")

 d = dict([("a", 3), ("b", 4), ("c", 5)])

6

String objectsString objects
The string object type is used to represent text. It can be created using the str()
func�on or by enclosing text in single or double quotes.

 # Wrap any text in single or double quotes to create a string

 a = "a string"

 b = 'another string'

 c = "A very long string"

 DNA = "ACGCAGTCGATGCTAGCTAGCTGACTGATCGTA"

7 . 1

More details on single vs double quotesMore details on single vs double quotes
The reason that both op�ons exist is that it can be useful to use them in conjunc�on
when the string you wish to create actually includes ' or " character in it.

 # Use double quotes to enclose a string with single quotes in it

 sentence1 = "Deren's dog's name is Phylo"

 # Use single quotes to enclose a string with double quotes in it

 sentence2 = 'Sometimes we call her "Fart-lo"'

 # There is also a special triple-quote option for multiline strings

 sentence3 = """

 This is a long string that is

 broken over multiple lines and

 stored with newline characters

 """

7 . 2

Strings versus Bytes (Python3)Strings versus Bytes (Python3)
In Python3 (as opposed to the older Python2) a new object type of 'bytes' was
introduced. This is very similar to a string, and it a more efficient way to represent
text data. In prac�ce, when you read in data from a file it will some�mes be in 'bytes'
format. It is easiest to just convert it to a 'string'.

 # A bytes object looks like a string but with a 'b' at the beginning

 a = str('this is a sentence')

 b = bytes('this is a sentence')

 # print the two objects

 print(a)

 print(b)

 'this is a sentence'

 b'this is a sentence'

7 . 3

Integers and FloatsIntegers and Floats
The integer and float object types are used for mathema�cal opera�ons.

 # numeric values (ints or float)

 a = 0

 b = 10

 c = 3300.239291

 d = 0.0000301

8 . 1

Integers and Floats: ChallengeIntegers and Floats: Challenge
Challenge 1: In a code cell below write three lines of Python code. On line 1 create a
new variable called 'y' with the value 30. On line 2 create another new variable 'z'
with the value 5.5. On line 3 use the print func�on to print the value of y / z.
(See Chapter 3 if you need help).

 y = 30

 z = 5.5

 print(y / z)

 5.454545454545454

8 . 2

Built-in Func�onsBuilt-in Func�ons
A func�on is a program that performs a task. Func�ons end in parentheses.
Example: the len() func�on returns the length of an object.

 # Create a string

 DNA = "ACTACTACTACTACTACTAC "

 # return the length of the string

 len(DNA)

 20

9 . 1

Built-in Func�onsBuilt-in Func�ons
You might be asking, but I thought func�ons are always associated with an object in
Python?. You're rigt. For convenience some func�ons look and act like standalone
func�ons but are actually associated to objects under the hood. Example:

 # Create a string

 DNA = "ACTACTACTACTACTACTAC "

 # len() is a shortcut function

 print(len(DNA))

 # it actually returns the result of a "hidden" function in the string object

 print(DNA.__len__())

 20

 20

9 . 2

Built-in Func�onsBuilt-in Func�ons
Example: string objects have func�ons to operate on strings, such as to format,
search, split, or modify the text in many ways.

 # Create a string

 DNA = "ACTACTACTACTACTACTAC"

 # access functions for string objects from the string object

 DNA.lower()

 "actactactactactactac"

10

Indexing and slicingIndexing and slicing
Select a subset of values by their posi�on (star�ng at 0). Think intervals: [0|1|2|3|4]

 # Select subsets of an object by their position (starting at 0)

 DNA = "ACTACTACTACTACTACTAC"

 DNA[0]

 "A"

 DNA = "ACTACTACTACTACTACTAC"

 DNA[1:5]

 "CTAC"

11

Indexing and slicingIndexing and slicing
Challenges: Use indexing to return only the first 10 characters of 'dna'; and only the
last 5. (See Chapter 3.1.2 if you need help)

 dna = "ACGCAGACGATTTGATGATGAGCATCGACTAGCTACACAAAGACTCAGGGCATATA"

 dna[:10]

 "ACGCAGACGA"

 dna[-5:]

 "ATATA

12

Indexing and slicingIndexing and slicing
Challenges: (1) Use the split() func�on to split the dna variable on the characters
"CG". (2) Store the returned result of step 1 to a new variable called dnalist. (3) Then
use the print func�on on the dnalist variable to show its contents.

 # the dna string variable

 dna = "ACGCAGACGATTTGATGATGAGCATCGACTAGCTACACAAAGACTCAGGGCATATA"

 # call split with the argument "CG" and store results as dnalist

 dnalist = dna.split("CG")

 # print to show the value of dnalist

 print(dnalist)

 ['A', 'CAGA', 'ATTTGATGATGAGCAT', 'ACTAGCTACACAAAGACTCAGGGCATATA']

13

Indexing and slicingIndexing and slicing
Challenge: In the cell below create two new variables, one called fiveprime that
contains the first ten 10 elements in dnalist, and another called threeprime that
contains the last 10 elements in dnalist.

 # the dna string variable

 dna = "ACGCAGACGATTTGATGATGAGCATCGACTAGCTACACAAAGACTCAGGGCATATA"

 # make dna string into a list object

 dnalist = list(dna)

 # index the first ten items and store as fiveprime

 fiveprime = dnalist[:10]

 # index last ten items and store as threeprime

 threeprime = dnalist[-10:]

14

Indenta�on and iterablesIndenta�on and iterables
Indenta�on in Python has meaning, where nested lines are influenced by the less
indented lines above them. For example, a for-loop.

 # format: for each item in container of items do x with item

 for letter in "aeiou":

 print(letter)

 "a"

 "e"

 "i"

 "o"

 "u"

15

Indenta�on and iterablesIndenta�on and iterables
Condi�onal statements act as a query to do something only if something is True or
False. The special keyword if is used here.

 # for item in container of items do x with item if it's the right kind.

 for letter in "aeiou":

 if letter == "a"

 print(letter)

 "a"

16

Condi�onal statements: ChallengeCondi�onal statements: Challenge
Challenge: (1) Create a list object of bases; (2) Iterate over the length of dnalist
selec�ng with indexing; (3) query condi�onal match the value "A"; (4) if "A" replace
with lowercase; (5) print.

 # 1. create a list

 dnalist = list("AAACCCGGGTTT")

 # 2. iterate over the index of the list

 for i in range(len(dnalist)):

 # 3: select each element and ask if it is "A"

 if dnalist[i] == "A":

 # 4. replace matching "A" with lowercase version

 dnalist[i] = dnalist[i].lower()

 # 5. print the final modified version of dnalist

 print(dnalist)

17

Condi�onal statements: ChallengeCondi�onal statements: Challenge

 dna1 = "AACTCGCTAAAGCCTCGCGGATCGATAAGCTAG"

 dna2 = "AAGTCGCTAAAGCAACGCGGAACGATAACCTGG"

 # Hint 1: create an integer variable set to 0

 diffs = 0

 # Hint 2: use the range function and index each object while iterating

 for idx in range(len(dna1)):

 dna1_value = dna1[idx]

 dna2_value = dna2[idx]

 if dna1_value != dna2_value:

 diffs += 1

 print(diffs)

 6

18

Func�ons (wri�ng your own)Func�ons (wri�ng your own)
Func�ons are used to perform a repeated task. As we said there are many func�ons
available in Python. In addi�on, you can write your own by using def()

 # a function to add 100 to x

 def myfunc(x):

 return x + 100

 # run the function on an input value (e.g., 200)

 myfunc(200)

 300

19

Func�ons (wri�ng your own)Func�ons (wri�ng your own)
Func�ons are used to perform a repeated task. As we said there are many func�ons
available in Python. In addi�on, you can write your own by using def()

 # name the function and the arguments anything you want

 def sumfunc(arg1, arg2):

 summed = arg1 + arg2

 return summed

 # run the function

 myfunc(200, 300)

 500

20

Comments and documenta�onComments and documenta�on

 def base_frequency(string):

 "returns the frequency of A, C, G, and T as a list"

 # create an empty list

 freqs = []

 # get the full length of the input string

 slen = len(string)

 # iterate over the letters A, C, G, and T

 for base in "ACGT":

 # count letter is in string divided by total and append to results

 freqs.append(string.count(base) / slen)

 # return the results list

 return freqs

 # test the function

 base_frequency("ACACTGATCGACGAGCTAGCTAGCTAGCTGAC")

21

Challenge: Understanding a mystery func�onChallenge: Understanding a mystery func�on

 def mystery_function(string):

 "no hint on this one"

 # code block 1

 ag = 0

 ct = 0

 # code block 2

 for element in string:

 if element in ["A", "G"]:

 ag += 1

 elif element in ["C", "T"]:

 ct += 1

 # code block 3

 freq_ag = ag / len(string)

 freq_ct = ct / len(string)

 return [freq_ag, freq_ct]

22 . 1

Challenge: Understanding a mystery func�onChallenge: Understanding a mystery func�on

 def mystery_function(string):

 "Takes input string and returns list with frequency of AG, CT"

 # integer counters

 ag = 0

 ct = 0

 # iterate over string recording purine (AG) or pyrimidine (CT)

 for element in string:

 if element in ["A", "G"]:

 ag += 1

 elif element in ["C", "T"]:

 ct += 1

 # calculate frequency from counts divided by total length

 freq_ag = ag / len(string)

 freq_ct = ct / len(string)

 # returns two frequencies in a list

 return [freq_ag, freq_ct]

22 . 2

Impor�ng librariesImpor�ng libraries
Import libraries as objects to access all of the func�ons and objects from these
addi�onal libraries.

 import random

 # generate one random number between 0 and 10

 random.randint(0, 10)

 # return a list of 10 random numbers

 [random.randint(0, 10) for i in range(10)]

 [3, 7, 0, 10, 3, 9, 1, 7, 10, 8]

23

Challenge: many ways to accomplish a taskChallenge: many ways to accomplish a task
Write a func�on using 'random' to generate a random sequence of DNA (As, Cs, Gs,
and Ts) of a length that is supplied as an argument. It should return the results as a
string object. Demonstrate by genera�ng a 20bp sequence.

 def random_dna(length):

 "returns a random string of ACGTs of len length"

 dna = ""

 for i in range(length):

 dna += random.choice("ACGT")

 return dna

 # test it out

 random_dna(20)

 "AGGTTTTACCGGTATGAGTC"

24

Post or vote on a question you have about the assignment

 When poll is active, respond at PollEv.com/dereneaton004⢓

25

https://pollev.com/dereneaton004

Interac�ve exercise wri�ng func�onsInterac�ve exercise wri�ng func�ons
Write a func�on from scratch that uses the 'random' library in some way. An example
could be to create a dice rolling func�on, or a func�on that randomly mutates a
string of DNA that it accepts as an argument. Try to get crea�ve, and share ideas and
code with your neighbor.

26

