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Today's topicsToday's topics

1. Recap of genome scaffolding methods 

2. Phylogene�c inference problem. 

3. Likelihood approaches. 

4. Alignment, homology, and phylogene�c markers. 

5. Genealogies and gene trees.
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Scaffolding: Hi-C Proximity Liga�onScaffolding: Hi-C Proximity Liga�on
Restric�on diges�on; streptavidin bead extrac�on; paired-seq.

3 . 1



Scaffolding: Amaranthus Hi-C AssemblyScaffolding: Amaranthus Hi-C Assembly
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10X genomics linked-read sequencing10X genomics linked-read sequencing
10x Genomics Chromium Genome 系統原理 - 威健⽣技10x Genomics Chromium Genome 系統原理 - 威健⽣技
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https://www.youtube.com/watch?v=aUyFzwRFWJQ


10X genomics linked-read sequencing10X genomics linked-read sequencing
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Major Genome ProjectsMajor Genome Projects
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Major Genome ProjectsMajor Genome Projects
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Tree thinking exercisesTree thinking exercises

Reading trees involves interpre�ng the order in which lineages share common
ancestors by tracing rela�onships backwards from the �ps towards the root. Rota�ng
nodes does not affect these rela�onships, even though the order of the �ps changes.
Which topology is different?
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Trees as dataTrees as data

Phylogene�c trees are more than just pictures, they represent a data structure that
can be interpreted and used in model-based analyses. Stored in Newick format.
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Phylogene�c inference: why?Phylogene�c inference: why?

Much of evolu�onary research involves reconstruc�ng the past, or making inferences
on the basis of relatedness/ancestry. Thus it is relevant to understand how
evolu�onary rela�onships are inferred, and the level of confidence we should place
in various types of inference.
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Phylogene�c inference: why?Phylogene�c inference: why?

Da�ng evolu�onary events: when popula�ons or species diverged; whether different
lineages show correlated histories; to compare rates of divergence among lineages;
to compare histories of different genes; to infer ancestral states (geography, traits).

 
4 . 5



Phylogene�c inference: why?Phylogene�c inference: why?

Compara�ve methods: species are non-independent data points. Some share more
evolu�onary history than others, i.e., diverged from a common ancestor more
recently. 

Example: Birds fly and lay eggs, mammals mostly do not fly or lay eggs. Is the
correla�on between flying and laying eggs an adapta�on? Almost surely not, it is a
coincident correla�on due to the shared history of all mammals versus all birds, and
the traits they inherited from their ancestors.

4 . 6



Phylogene�c inference: examplesPhylogene�c inference: examples

Methods of phylogene�c inference, and model-based historical inferences using
trees, are both highly ac�ve areas of research. Many new methods are published in
the journal of , while countless applied examples are published in
various journals, including Evolu�on, Molecular Biology and Evolu�on, Molecular
Phylogene�cs and Evolu�on, Molecular Ecology, etc.

Systema�c Biology
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https://academic.oup.com/sysbio/issue


Phylogene�c inference: methodsPhylogene�c inference: methods

Collect/measure homologous characters for some number of taxa. For DNA,
iden�fying homology typically involves targe�ng regions of the genome using
primers, or mapping sequenced reads from the genome to the same region of a
reference genome. Either way, it is based on sequence similarity. This is typically
followed by a more rigorous mul�ple sequence alignment.
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Phylogene�c inference: methodsPhylogene�c inference: methods
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Phylogene�c inference: methodsPhylogene�c inference: methods

A general outline of phylogene�c inference:

1. Propose a star�ng tree (e.g., random or star). 
2. Score based on some criterion (e.g., parsimony, likelihood, distance).
3. Modify to propose a new tree, return to step 2.
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Phylogene�c inference: methodsPhylogene�c inference: methods

Distance methods: build a tree based on pairwise distances (e.g., UPGMA and
neighbor-joining). 

Parsimony methods: search for best tree based on minimizing character changes
along branches. 

Likelihood/sta�s�cal methods: search for tree on which the observed data is most
likely to have evolved under an assumed model of evolu�on. 

Other methods: many are variants of likelihood sta�s�cal methods, but others exist
as well, but the most popularly used are listed above. 
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Phylogene�c inference: distance methods (UPGMA)Phylogene�c inference: distance methods (UPGMA)

1. A pairwise distance matrix is computed from characters.

 
2. New internal node is created joining the shortest distance between points. Their branch lengths are set
to half the distance, and a new matrix is computed to this node using average distance to its descendants. 

3. repeat from 1 un�l all internal nodes are added. 

 

h�ps://en.wikipedia.org/wiki/UPGMA

https://en.wikipedia.org/wiki/UPGMA
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Phylogene�c inference: distance methods (neighbor-joining)Phylogene�c inference: distance methods (neighbor-joining)

1. A pairwise distance matrix is computed from characters.

 
2. (Star�ng from a star-tree ini�ally), join two nodes with smallest distance to create an ancestor, transform
distance matrix so that all pairwise distances are retained (uses en�re matrix not just pairs). 

3. repeat from 1 un�l all internal nodes are added. 

 

h�ps://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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Phylogene�c inference: distance methods (summary)Phylogene�c inference: distance methods (summary)

shortcomings: They yield a single best tree but do not provide a score (e.g.,
likelihood) that could be used to compare against alterna�ves (how much be�er is
it?)

Sensi�ve to model assump�ons, such as molecular clock (UPGMA) or that distances
are addi�ve (i.e., when one gets longer another gets shorter; NJ).

strengths: it is very fast and computa�onally efficient. For this reason NJ has had a
resurgence for use in popula�on genomics where datasets ae very large and model
assump�ons are less likely to be violated among closely related popula�ons (e.g.,
human popula�ons).
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Phylogene�c inference: ParsimonyPhylogene�c inference: Parsimony

A character matrix and a topology. Count the number of character state changes.
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Phylogene�c inference: ParsimonyPhylogene�c inference: Parsimony

Parsimony principle: The evolu�onary tree that minimizes the net amount of
evolu�on (fewest steps) should be preferred. 

1. Propose a topology (e.g., randomly)
2. Calculate score (e.g., Fitch algorithm)
3. Propose new tree and repeat (test all or many trees).
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Phylogene�c inference: methodsPhylogene�c inference: methods
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Parsimony's pi�allParsimony's pi�all

It does not account for homoplasy (repeated muta�ons to the same site).
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Inferring the past from the presentInferring the past from the present

Sta�s�cal modeling is widely used in evolu�onary research to test or compare
hypotheses and to es�mate model parameters. 

A model describes a mechanis�c (probabilis�c) process that could produce
observable data. It is especially useful when we cannot observe the past, but we can
observe data at the present.
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Models, Probability, and LikelihoodModels, Probability, and Likelihood

The use of sta�s�cal models for historical inference is not unique to evolu�on, or
biology, although many sta�s�cal methods were developed by biologists 

 

A likelihood func�on describes the probabili�y of a set of observa�ons given a set of
model parameters. Likelihood can express the probability of a DNA sequence
alignment given a phylogene�c hypotheses, or it can express the probability that a
coin toss will turn up heads versus tails. 

What do we mean by a model parameter?

(e.g., the
Likelihood framework was developed by the gene�cist R.A. Fisher)
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https://en.wikipedia.org/wiki/Likelihood_function


Sta�s�cal phylogene�csSta�s�cal phylogene�cs

The likelihood func�on calculates probability of observing a character state (DNA
site in an alignment) under a specific model of molecular subs�tu�on and a
phylogene�c tree (more on these soon).

Simplest models treat each DNA site independently so that the likelihood of a
sequence alignment (many sites) is simply the product of the individual site
likelihoods: 

L(D) = L( ) = f ( |Θ)∏
i=1

n

Di ∏
i=1

n

Di
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Sta�s�cal phylogene�csSta�s�cal phylogene�cs

By only knowing the results of coin tosses that occurred in the past we are able to
es�mate the model parameters that are most likely to have produced them (i.e., the
probability the coin toss is heads or tails).

The same principle applies to es�ma�ng the evolu�onary distance between two
aligned DNA sequences. Looking only at the results of an evolu�onary process that
occurred in the past we can es�mate the model parameters that are most likely to
have produced the DNA differences between a set of taxa. 

Whereas the coin toss problem assumed a Bernoulli distribu�on as the underlying
model, for DNA subs�tu�ons we use a molecular subs�tu�on model, which is a type
of Con�nuous Time Markov Model.
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Molecular Subs�tu�on ModelsMolecular Subs�tu�on Models

Many muta�ons occur that are not observable in the present-daty samples alone due
to homoplasy (repeated muta�ons to the same sites).
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Molecular Subs�tu�on ModelsMolecular Subs�tu�on Models

Instantaneous transi�on rate matrix ( ): Similar to the coin toss example, where q was
equal to 1-p, you can see that the probability of not changing over some length of
�me is simply (1 - probability of changing.)

 

Q

h�ps://en.wikipedia.org/wiki/Models_of_DNA_evolu�on
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https://en.wikipedia.org/wiki/Models_of_DNA_evolution


Molecular Subs�tu�on ModelsMolecular Subs�tu�on Models

Transi�on-probability matrix: the probability of change between states over some �me
interval (t) is easily calculated as . This tells us the probability of star�ng in
some state (e.g., A) and ending as another (e.g., T). Jukes-Cantor Model predicts
equal prob. for any state over very long branches.

 

P(t) = eQt

h�ps://en.wikipedia.org/wiki/Models_of_DNA_evolu�on
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https://en.wikipedia.org/wiki/Models_of_DNA_evolution


Markov Process ModelsMarkov Process Models

A Markov Process is a random process in which the future state is not dependent on
past states, but only on the present. (It is memory-less.) 

These types of models are used extensively in evolu�onary modeling, and in many
other fields. Made up of a set of discrete states, star�ng frequencies, and a
mechanism for transi�oning between states. 

Can be used to infer parameters (describing an unobserved process) that are most
likely to produce observed data. For example, we model changes occurring in DNA
sites as a Markov process.
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Markov Process ModelsMarkov Process Models

h�p://setosa.io/blog/2014/07/26/markov-chains/
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Inferring phylogenies by MLInferring phylogenies by ML

Felsenstein (1981) is a classic paper with >10K cita�ons although the methods in
this paper have easily been used 10-100X this o�en.

The likelihood of a tree is calculated as the likelihood of the data (sequence
alignment) given the hypothesis (tree) under a given model (Markov subs�tu�on
process).

Unlike coin tosses the likelihoods for different trees do not sum to 1. In theory, we
must calculate the probabili�y of the sequence alignment on every tree to find the
maximum. The probability of a tree hypothesis is calculated as the probability of
observing subs�tu�ons along each branch of a tree. We must op�mize parameters of
our model (e.g., JC), and branch lengths of each tested tree.
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Inferring phylogenies by MLInferring phylogenies by ML

Felsenstein (1981) is a classic paper with >10K cita�ons although the methods in
this paper have easily been used 10-100X this o�en.

Because tree size is so large, we must use heuris�c tree search algorithms to find the
best tree. Felsenstein proposed a step-wise addi�on method to start, followed by
local re-arrangements. Many similar methods are used today, involving sequen�al re-
arrangements of the tree.
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The subprocess moduleThe subprocess module
Execute code in a bash environment and return results.

 

  import subprocess 

 

  # call a command with separate terms written as strings in a list 

  cmd = ["muscle", "-in", fasta_file, "-out", aligned_file] 

  proc = subprocess.call(cmd) 
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The subprocess moduleThe subprocess module
Execute code in a bash environment and return results.

 

  import subprocess 

 

  # write stdout to a file 

  cmd = ["echo", "hello world"] 

  proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) 

  stdout, stderr = proc.communicate() 

  print(stdout) 

                    

 

  hello world 
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