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Today's topics

1. Recap of genome scaffolding methods

2. Phylogenetic inference problem.

3. Likelihood approaches.

4. Alignment, homology, and phylogenetic markers.

5. Genealogies and gene trees.



Scaffolding: Hi-C Proximity Ligation

Restriction digestion; streptavidin bead extraction; paired-seaq.
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Scaffolding: Amaranthus Hi-C Assembly

Scaffolds: 3,518

sN50:  0.37 Mb SRA1

sL50: 243
Length: 376.4 Mb

Scaffold with
Hi-C Proximo

Scaffolds: 493

Hybrid assembly with PBJelly/SSPACCE

APS1

Scaffolds: 1,184

- PacBio sN50:  1.09 Mb
E sL50: 100
N\ Length: 400.9 Mb

sN50:  22.7 Mb - Scaffolds clustered: 3,240 {921%
sL50: 7 Length clustered: ~ 375.3 Mb

Length: 376.7 Mb

Scaffold/gap fil
with PBJelly

Scaffolds: 287

sN50: 247 Mb PGA1.5

sL50: 7
Length: 400.9 Mb

Break at
all gaps

Re-scaffold with
Hi-C Proximo

Gap fill with
PBJelly

Polish with
QuiverPILON
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Scaffolds: a08
sMN50: 244 Mb

sL50: ?
Length: 403.9 Mb

Scaffolds ordered: 3.041 (86.4%)

—_— Length ordered: 374.9 Mb (99.6%)

e Scaffolds HQ ordered: 1,023 (33.6%)

PacBio Length HQ ordered: 316.9 Mb (84.5%)

Polish with

Cuiver/PILON
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/
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Scaffolds clustered: 2,688 EH&E%
Length clustered:  396.1 Mb (99.0%

Scaffolds ordered: 2,149 (70.5%
Length ordered: 392.7 Mb (98.1%

Scaffolds HQ ordered: 1,148 (53.4%)
Length HQ ordered: 358.3 Mb (91.3%)
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10X genomics linked-read sequencing

10x Genomics Chromium Genome ZRIRERIE - Ri@EH
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https://www.youtube.com/watch?v=aUyFzwRFWJQ

10X genomics linked-read sequencing

v | Horticulture
Research

Article | Open Access | Published: 12 January 2018

Reference quality assembly of the 3.5-Gb
genome of Capsicum annuum from a single
linked-read library

Amanda M. Hulse-Kemp Shamoni Maheshwari, Kevin Stoffel, Theresa A. Hill, David
Jaffe, Stephen R. Williams, Neil Weisenfeld, Srividya Ramakrishnan, Vijay Kumar, Preyas
Shah, Michael C. Schatz, Deanna M. Church & Allen Van Deynze
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Major Genome Projects

10KP: A phylodiverse genome sequencing plan 3

Shifeng Cheng, Michael Melkonian, Stephen A Smith, Samuel Brockington, John M Archibald, Pierre-Marc Delaux, Fay-Wei Li,
Barbara Melkonian, Evgeny V Mavrodiev, Wenjing Sun, Yuan Fu, Huanming Yang, Douglas E Soltis, Sean W Graham,
Pamela S Soltis, Xin Liu, Xun Xu &, Gane Ka-5hu Wong &

Author Notes

GigaScience, Volume 7, Issue 3, March 2018, giy013, https://doi.org/10.1093/gigascience/giy013
Published: 20 February 2018  Article history »

PDF BB Split View ee Cite A Permissions =3 Share »

Abstract

Understanding plant evolution and diversity in a phylogenomic context is an enormous challenge due,
in part, to limited availability of genome-scale data across phylodiverse species. The 10KP (10,000

Plants) Genome Sequencing Project will sequence and characterize representative genomes from every

major clade of embryophytes, green algae, and protists (excluding fungi) within the next 5 years. By
implementing and continuously improving leading-edge sequencing technologies and bioinformatics
tools, 10KP will catalogue the genome content of plant and protist diversity and make these data freely

available as an enduring foundation for future scientific discoveries and applications. 10KP is structured

as an international consortium, open to the global community, including botanical gardens, plant
research institutes, universities, and private industry. Our immediate goal is to establish a policy
framework for this endeavor, the principles of which are outlined here.
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Major Genome Projects

Earth BioGenome Project: Sequencing life for the
future of life

Harris A. Lewin, Gene E. Robinson, W. John Kress, William ). Baker, Jonathan Coddington,

Keith A. Crandall, Richard Durbin, %2 Scott V. Edwards, Félix Forest, M. Thomas P. Gilbert,
Melissa M. Goldstein, Igor V. Grigoriev, Kevin |. Hackett, David Haussler, Erich D. Jarvis, Warren E. [ohnson,
Aristides Patrinos, Stephen Richards, Juan Carlos Castilla-Rubio, Marie-Anne van Sluys, Pamela 5. Soltis,
Xun Xu, Huanming Yang, and Guojie Zhang

PMAS April 24, 2018 115 (17) 4325-4333; first published April 23, 2018 https./fdol.org/10.1073/pnas. 1720115115

Edited by John C. Avise, University of California, Irvine, CA, and approved March 15, 2018 (received for review January 6, 2018)
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Abstract

Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are
among the most crucial scientific and social challenges of the new millennium. These challenges
require fundamental new knowledge of the organization, evelution, functions, and interactions
among millions of the planet's organisms. Herein, we present a perspective on the Earth
BioGenome Project (EBF), a moonshot for biology that aims to sequence, catalog, and characterize
the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the
EBP will inform a broad range of major issues facing humanity, such as the impact of climate
change on biodiversity, the conservation of endangered species and ecosystems, and the
preservation and enhancement of ecosystem services. We describe hurdles that the project faces,
including data-sharing policies that ensure a permanent, freely available resource for future
scientific discovery while respecting access and benefit sharing guidelines of the Magoya Protocol.
We also describe scientific and organizational challenges in executing such an ambitious project,
and the structure proposed to achieve the project’s goals. The far-reaching potential benefits of
creating an open digital repository of genomic information for life on Earth can be realized only by a
coordinated international effort.
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Tree thinking exercises

Reading trees involves interpreting the order in which lineages share common
ancestors by tracing relationships backwards from the tips towards the root. Rotating
nodes does not affect these relationships, even though the order of the tips changes.

Which topology is different?

gibboin gibbon gibbon — Orangutan

p— I:IrEI'IgL.IIEI'I e gl:ll'l”.ﬂ pr— ﬂrarlgutﬂrl gﬂrilla

e Chimp e [UMan human e lUMan

e FUMaN e Chimp chimp e CHIIMID

— gorilla ——————  orangutan — gorilla gibbon
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Trees as data

Phylogenetic trees are more than just pictures, they represent a data structure that
can be interpreted and used in model-based analyses. Stored in Newick format.

In [23]: # modify this newick string by inserting additional parentheses
comb = "(a,b,c,d,e,f,g);"
newick = "((((((a,b),c),d),e),q),f);"

In [24]: # load and draw the tree
toytree.tree(newick).draw(use edge lengths=False);
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Trees as data

Phylogenetic trees are more than just pictures, they represent a data structure that
can be interpreted and used in model-based analyses. Stored in Newick format.

In [29]: # modify this newick string by inserting additional parentheses
comb = "(a,b,c,d,e,f,qg);"
newick = "(((a,b),((c,d),e)),f);"

In [30]: # load and draw the tree
toytree.tree(newick).draw(use edge lengths=False);
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Phylogenetic inference: why?

Much of evolutionary research involves reconstructing the past, or making inferences
on the basis of relatedness/ancestry. Thus it is relevant to understand how
evolutionary relationships are inferred, and the level of confidence we should place

In various types of inference.




Phylogenetic inference: why?

Dating evolutionary events: when populations or species diverged; whether different
lineages show correlated histories; to compare rates of divergence among lineages;

to compare histories of different genes; to infer ancestral states (geography, traits).

@ = ASR generated ancestor

. = Extant sequence

Distant Past
4

— Vertical Comparison

Present Day .
*

Y

Horizontal Comparison



Phylogenetic inference: why?

Comparative methods: species are non-independent data points. Some share more
evolutionary history than others, i.e., diverged from a common ancestor more

recently.

Example: Birds fly and lay eggs, mammals mostly do not fly or lay eggs. |Is the
correlation between flying and laying eggs an adaptation? Almost surely not, it is a
coincident correlation due to the shared history of all mammals versus all birds, and

the traits they inherited from their ancestors.



Phylogenetic inference: examples

Methods of phylogenetic inference, and model-based historical inferences using
trees, are both highly active areas of research. Many new methods are published in
the journal of Systematic Biology, while countless applied examples are published in

various journals, including Evolution, Molecular Biology and Evolution, Molecular

Phylogenetics and Evolution, Molecular Ecology, etc.


https://academic.oup.com/sysbio/issue

Phylogenetic inference: methods

Collect/measure homologous characters for some number of taxa. For DNA,
identifying homology typically involves targeting regions of the genome using
primers, or mapping sequenced reads from the genome to the same region of a
reference genome. Either way, it is based on sequence similarity. This is typically

followed by a more rigorous multiple sequence alignment.

CTTACTAATCC
TTTATTAATTLC
TCTATTAATTC
TTTATTAATTLC
TCTACTAATTLC
ATTATTAATTLC
ATTEBCTAATTC
ATTATTAATCC
TCTATTAATTC
CTTATTAATTC
CTTATTAATTC

CTTATTAATTC
TOCTTTTAATTL

AATTA TC
AMACTA TC
AACTT TC
AACTT cC
A ATTA TC
AACTT TC
AATTA TC
AATTA TC
AATTA ALC
AALCTC A
AACTC AL

AACTC C
A ATTA AlE

FIFEFEEFEFEREILERERELEREF
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Phylogenetic inference: methods

The numbers of different unrooted and rooted binary tree topologies U,
and Ry are

n n+1
Un = ] (2 — 5), Rn= [] (2i - 5)
1=3 1=3
where n is the number of taxa.
n Un Rn
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10395
8 10395 135135
9 135135 | 2027025
10 [ 2027025 | 34459425

Rop = 8 200 794 532 637 891 559 375



Phylogenetic inference: methods

A general outline of phylogenetic inference:

1. Propose a starting tree (e.g., random or star).
2. Score based on some criterion (e.g., parsimony, likelihood, distance).
3. Modify to propose a new tree, return to step 2.

.10



Phylogenetic inference: methods

Distance methods: build a tree based on pairwise distances (e.g., UPGMA and

neighbor-joining).

Parsimony methods: search for best tree based on minimizing character changes

along branches.

Likelihood/statistical methods: search for tree on which the observed data is most

likely to have evolved under an assumed model of evolution.

Other methods: many are variants of likelihood statistical methods, but others exist

as well, but the most popularly used are listed above.

.1



Phylogenetic inference: distance methods (UPGMA)

1. A pairwise distance matrix is computed from characters.

Let us assume that we have five elements (a, b, ¢, d, e]l and the following matrix L)1 of pairwise distances between them :

a b c d a
a 0 17 21 3 23
b 17 0 30 34 21
c 21 30 0 28 39
d By 34 28 0 43
e 23 21 39 43 0

2. New internal node is created joining the shortest distance between points. Their branch lengths are set

to half the distance, and a new matrix is computed to this node using average distance to its descendants.

3. repeat from 1 until all internal nodes are added.

We now reiterate the three previous steps, starting from the new distance matrix D5

(a,b) c d e
(a,b) 0 25.5 32.5 22
25.5 0 28 39
d 325 28 0 43
e 22 39 43 0

https:/en.wikipedia.org/wiki/UPGMA


https://en.wikipedia.org/wiki/UPGMA
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Phylogenetic inference: distance methods (neighbor-joining)

1. A pairwise distance matrix is computed from characters.

Let us assume that we have five elements (a, b, ¢, d, e]l and the following matrix L)1 of pairwise distances between them :

a b c d a
a 0 17 21 3 23
b 17 0 30 34 21
c 21 30 0 28 39
d By 34 28 0 43
e 23 21 39 43 0

2. (Starting from a star-tree initially), join two nodes with smallest distance to create an ancestor, transform

distance matrix so that all pairwise distances are retained (uses entire matrix not just pairs).

3. repeat from 1 until all internal nodes are added.

We now reiterate the three previous steps, starting from the new distance matrix D5

(a,b) c d e
(a,b) 0 25.5 32.5 22
c 25.5 0 28 39
d 325 28 0 43
e 22 39 43 0

https:/en.wikipedia.org/wiki/Neighbor_joining


https://en.wikipedia.org/wiki/Neighbor_joining
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Phylogenetic inference: distance methods (summary)

shortcomings: They vield a single best tree but do not provide a score (e.g.,

ikelihood) that could be used to compare against alternatives (how much better is
it?)

Sensitive to model assumptions, such as molecular clock (UPGMA) or that distances

are additive (i.e., when one gets longer another gets shorter; NJ).

strengths: it is very fast and computationally efficient. For this reason NJ has had a
resurgence for use in population genomics where datasets ae very large and model
assumptions are less likely to be violated among closely related populations (e.g.,
human populations).

.14



Phylogenetic inference: Parsimony

A character matrix and a topology. Count the number of character state changes.

Characters
Species 1 2 3 4 5 6 Alpha  Delta Gamma Beta  Epsilon
Alpha 1 001 1 0
Beta O 01 0 0 O0
Gamma 1 1 O O O O
Delta 1 1 01 1 1
Epsion - 0 0 1 1 1 0



Phylogenetic inference: Parsimony

A character matrix and a topology. Count the number of character state changes.

Species
Alpha
Beta
Gamma
Delta

Epsilon

O~ ORF

Characters

O P OO N

3

= O O O

R OO W

P = O Ok O

OB OOO O

Alpha  Delta Gamma Beta  Epsilon

or

Alpha  Delta Gamma Beta  Epsilon

5.



Phylogenetic inference: Parsimony

A character matrix and a topology. Count the number of character state changes.

Alpha Delta Gamma Beta Epsilon

Characters . ~
Species 1 2 3 4 5 6
Alpha 1 0 01 1 0 ot
Beta O 01 0 0O
Gamma 1 1 O O O O
Delta 1 1 01 1 1
Epsilon 0O 01 1 1 0




Phylogenetic inference: Parsimony

Parsimony principle: The evolutionary tree that minimizes the net amount of

evolution (fewest steps) should be preferred.

1. Propose a topology (e.g., randomly)
2. Calculate score (e.g., Fitch algorithm)
3. Propose new tree and repeat (test all or many trees).

5.



Phylogenetic inference: methods

The numbers of different unrooted and rooted binary tree topologies U,
and Ry are

n n+1
Un = ] (2 — 5), Rn= [] (2i - 5)
1=3 1=3
where n is the number of taxa.
n Un Rn
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10395
8 10395 135135
9 135135 | 2027025
10 [ 2027025 | 34459425

Rop = 8 200 794 532 637 891 559 375



Parsimony's pitfall

't does not account for homoplasy (repeated mutations to the same site).

t=0 C C A T G
|
t=1 C C A C G
10 - _{3— true substitutions 1
—ae— Observerd differences f =2 C C G C @G
8 - |
t=23 C C C C @G
g |
Z 6 t=4 C C C G G
=)
g !
E 4. t=5 C A C G G
5 l
* t=6 G A C G G
! !
t=17 G A C T G
0
t =8 G A C T G
true substitutions t =9 i A C T G
|
t=10 A A T C G

O O o 0o o 0o o 0o 0O 0O 0
> > PO O O O O 6O O O



Inferring the past from the present

Statistical modeling is widely used in evolutionary research to test or compare

hypotheses and to estimate model parameters.

A model describes a mechanistic (probabilistic) process that could produce
observable data. It is especially useful when we cannot observe the past, but we can

observe data at the present.

A



Models, Probability, and Likelihood

The use of statistical models for historical inference is not unique to evolution, or
biology, although many statistical methods were developed by biologists (e.g., the
Likelihood framework was developed by the geneticist R.A. Fisher)

A likelihood function describes the probabilitiy of a set of observations given a set of
model parameters. Likelihood can express the probability of a DNA sequence

alignment given a phylogenetic hypotheses, or it can express the probability that a
coin toss will turn up heads versus tails.

What do we mean by a model parameter?

6.
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https://en.wikipedia.org/wiki/Likelihood_function

Statistical phylogenetics

The likelihood function calculates probability of observing a character state (DNA
site in an alignment) under a specific model of molecular substitution and a

phylogenetic tree (more on these soon).

Simplest models treat each DNA site independently so that the likelihood of a

sequence alignment (many sites) is simply the product of the individual site
likelihoods:

L) =[] Lo = []r0i1)
i=1 i=1

6
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Statistical phylogenetics

By only knowing the results of coin tosses that occurred in the past we are able to
estimate the model parameters that are most likely to have produced them (i.e., the

probability the coin toss is heads or tails).

The same principle applies to estimating the evolutionary distance between two
aligned DNA sequences. Looking only at the results of an evolutionary process that
occurred in the past we can estimate the model parameters that are most likely to

have produced the DNA differences between a set of taxa.

Whereas the coin toss problem assumed a Bernoulli distribution as the underlying
model, for DNA substitutions we use a molecular substitution model, which is a type

of Continuous Time Markov Model.

6
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Molecular Substitution Models

Many mutations occur that are not observable in the present-daty samples alone due

to homoplasy (repeated mutations to the same sites).

t=20 C C A T G C @G
|
t =1 C C A C G C @
10 - —[1— true substitutions 1
—ae— Observerd differences t =2 C C G C G C @G
8 |
. t=23 C C C€C C G C @
3 |
g6 t =4 C C C€C G G C @G
5 |
g A
e t =5 C A C G G C @
E 1
* t=6 G A C G G C G
2 l
t =7 G A C T G C @G
|
0
t =28 G A C T G C A
true substitutions t =090 i A C T G C A
|
t=10 A A T C G C A



Molecular Substitution Models

Instantaneous transition rate matrix (Q): Similar to the coin toss example, where g was
equal to 1-p, you can see that the probability of not changing over some length of

time is simply (1 - probability of changing.)

a 1—(3x)

-
*
o 3¢ o
-
~

Y, N2
(A)e - >(C)
1-(3a) AVARES

Dotted Arrow: Transition; Solid Arrow: Transversion
o: rate of substitution of one nucleotide by another nucleotide
1 —3a: rate of substitution of one nucleotide by same nucleotide

https:/en.wikipedia.org/wiki/Models_of DNA_evolution
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https://en.wikipedia.org/wiki/Models_of_DNA_evolution

Molecular Substitution Models

Transition-probability matrix: the probability of change between states over some time
interval (t) is easily calculated as P(¥) = e’ This tells us the probability of starting in
some state (e.g., A) and ending as another (e.g., T). Jukes-Cantor Model predicts

equal prob. for any state over very long branches.

00 05 10 15 20 25 30 35 40 45 50

Branch length v

https:/en.wikipedia.org/wiki/Models_of DNA_evolution
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https://en.wikipedia.org/wiki/Models_of_DNA_evolution

Markov Process Models

A Markov Process is a random process in which the future state is not dependent on

past states, but only on the present. (It is memory-less.)

These types of models are used extensively in evolutionary modeling, and in many
other fields. Made up of a set of discrete states, starting frequencies, and a
mechanism for transitioning between states.

Can be used to infer parameters (describing an unobserved process) that are most

likely to produce observed data. For example, we model changes occurring in DNA
sites as a Markov process.

6

.8



Markov Process Models

http:/setosa.io/blog/2014/07/26/markov-chains/

6

.9


http://setosa.io/blog/2014/07/26/markov-chains/

Inferring phylogenies by ML

Felsenstein (1981) is a classic paper with >10K citations although the methods in
this paper have easily been used 10-100X this often.

The likelihood of a tree is calculated as the likelihood of the data (sequence
alignment) given the hypothesis (tree) under a given model (Markov substitution

Drocess).

Unlike coin tosses the likelihoods for different trees do not sum to 1. In theory, we
must calculate the probabilitiy of the sequence alignment on every tree to find the
maximum. The probability of a tree hypothesis is calculated as the probability of
observing substitutions along each branch of a tree. We must optimize parameters of

our model (e.g., JC), and branch lengths of each tested tree.



Inferring phylogenies by ML

Felsenstein (1981) is a classic paper with >10K citations although the methods in
this paper have easily been used 10-100X this often.

Because tree size is so large, we must use heuristic tree search algorithms to find the
best tree. Felsenstein proposed a step-wise addition method to start, followed by

local re-arrangements. Many similar methods are used today, involving sequential re-

arrangements of the tree.

Db.l ective function Global maximum
L 3

shoulder

LO¢ aximum
\ “flat” local maximum

» State space

Current
state
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The subprocess module

Execute code in a bash environment and return results.

import subprocess

cmd = ["muscle", "-in", fasta file, "-out", aligned file]

proc = subprocess.call (cmd)




The subprocess module

Execute code in a bash environment and return results.

import subprocess

cmd = | , ]
proc = subprocess.Popen (cmd, stdout=subprocess.PIPE)

stdout, stderr = proc.communicate ()

print (stdout)

hello world

7.



