Principles and Applications of Modern DNA Sequencing

EEEB GU4055

Session 11: Genome Assembly

Today's topics

de Bruijn Graphs and Euler.
Kmers.
Challenges in Genome Assembly.
Empirical Example.

2

Kmers and de Bruijn graphs

Reads start and end at different positions covering all or nearly all of the genome. Decomposing reads into smaller kmers makes it more likely that we have uniformly sized bits covering the entire genome. This is useful for building a graph.

Kmers and de Bruijn graphs

Shortest possible superstring that contains all substrings of length k.

Box 1 Origin of de Bruijn graphs

In 1946, the Dutch mathematician Nicolaas de Bruijn became interested in the 'superstring problem'12: find a shortest circular 'superstring' that contains all possible 'substrings' of length k (k-mers) over a given alphabet. There exist n^k k-mers in an alphabet containing *n* symbols: for example, given the alphabet comprising A, T, G and C, there are $4^3 = 64$ trinucleotides. If our alphabet is instead 0 and 1, then all possible 3-mers are simply given by all eight 3-digit binary numbers: 000, 001, 010, 011, 100, 101, 110, 111. The circular superstring 0001110100 not only contains all 3-mers but also is as short as possible, as it contains each 3-mer exactly once. But how can one construct such a superstring for all k-mers in the case of an arbitrary value of k and an arbitrary alphabet? De Bruijn answered this question by borrowing Euler's solution of the Bridges of Königsberg problem. Briefly, construct a graph B (the original graph called a de Bruijn graph) for which every possible (k-1)-mer is assigned to a node; connect one (k-1)-mer by a directed edge to a second (k-1)mer if there is some *k*-mer whose prefix is the former and whose suffix is the latter (Fig. 2). Edges of the de Bruijn graph represent all possible k-mers, and thus an Eulerian cycle in B represents a shortest (cyclic) superstring that contains each k-mer exactly once. By checking that the indegree and outdegree of every node in B equals the size of the alphabet, we can verify that B contains an Eulerian cycle. In turn, we can construct an Eulerian cycle using Euler's algorithm, therefore solving the superstring problem. It

Figure 2 De Bruijn graph. The de Bruijn graph B for k = 4 and a twocharacter alphabet composed of the digits 0 and 1. This graph has an Eulerian cycle because each node has indegree and outdegree equal to 2. Following the blue numbered edges in order from 1 to 16 traces an Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000. Recording the first character (in boldface) of each edge label spells the cyclic superstring 0000110010111101.

should now be apparent why the 'de Bruijn graph' construction described in the main text, which does not use all possible k-mers as edges but rather only those generated from our reads, is also named in honor of de Bruijn.

Kmers and de Bruijn graphs

Hamiltonian graph requires comparing/aligning kmers, which is hard when the number and size of kmers is large. de Bruijn graphs join identical matching (k-1)mers, such that kmers form the edges of the graph -- a much simpler computation.

Solution When poll is active, respond at **PollEv.com/dereneaton004**

[6,7,8] Use functions to accomplish the designated tasks...

Compare your functions and requite with at least two of your

ignated tasks...

Genome Assembly

denovo Genome Assembly

denovo genome assembly is computationally demanding. Requires reads that cover the full genome many times (e.g., 50X). The end goal is to assemble scaffolds that match to chromosomes -- the real *bits* of the genome.

Support State	2	Orthorette	All and all a	pecility.	a deline a				
Annessia 6	tootal 7	8	a Tarati Marti	00000 10	(中国) (日本)(日) 11	12			
13	14 14	₫ ĝ 15		16	17 17	18 N			
19	8 B 20	21		A A 22	xx (or XY)	MT			

Combining short and long-read technologies

Short read assemblies are highly fragmented. Long read technologies are highly error prone. Combining the two technologies -- while obtaining high-coverage of both -- is *currently* the gold standard.

PacBio Assembly Algorithms

Caveats: Long reads require HMW DNA, sometimes a lot.

Specialized DNA extraction kits and protocols are used to isolate long (unbroken) DNA fragment lengths. More expensive and time-consuming, but worth it.

Eucalypus: (500Mb size, 170X ONT; 200X Illumina)

The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies 👌

Weiwen Wang 🕿, Ashutosh Das, David Kainer, Miriam Schalamun, Alejandro Morales-Suarez, Benjamin Schwessinger, Robert Lanfear 🐱 🛛 Author Notes

Assembly	Long-read^	Short-read	Assembler	Assembly time (CPU hours)*	Length (bp)	contigs	Largest contig (bp)	N50 (bp)	L50	GC (%)	Ns (%)
Canu_1kb	≥1 kb (~174 ×)	х	Canu	~300,000	871,577,052	2,867	7,123,373	629,835	259	39.18	0
Canu_35kb	≥35 kb (~40 ×)	Х	Canu	~50,000	825,916,527	2,550	10,153,603	962,598	158	39.18	0
SMARTdenovo_1kb	≥1 kb (~174 ×)	Х	SMARTdenovo	~8,000	610,858,639	729	6,287,341	1,711,661	107	39.29	0
SMARTdenovo_35kb	≥35 kb (~40 ×)	Х	SMARTdenovo	~4,000	586,903,502	704	9,494,401	1,868,532	91	39.27	0
Flye_1kb	$\geq 1 \text{ kb} (\sim 174 \times)$	Х	Flye	~700	596,007,484	5,930	2,755,662	255,434	652	39.12	0
Flye_35kb	≥35 kb (~40 ×)	Х	Flye	~500	561,349,738	4,145	2,407,003	352,050	448	39.17	0
Marvel_35kb	≥35 kb (~40 ×)	Х	Marvel	~28,000	649,061,435	1,181	6,453,759	795,971	182	39.07	0
MaSuRCA_1kb	≥1,kb (~174 ×)	\sim 228 \times	MaSuRCA	~23,000	778,288,575	1,311	12,224,271	1,885,174	95	39.35	0.04
MaSuRCA_35kb	≥35 kb (~40 ×)	\sim 228 \times	MaSuRCA	~21,000	773,035,614	1,703	8,684,546	1,304,720	146	39.39	0.09

Table 1: Raw (before polish and haplotig removal) assembly statistics

^All long reads were corrected by Canu before assembly. The Canu correction step took ~200,000 CPU hours, which has not been included in the assembly runtime. *With ~1 TB of RAM.

Table 3: The comparison of final assemblies

			Contig N50	BUSCO score (1,440 genes in total)						Assembly	Short-read mapping		Long-read mapping			Structural	
Assembly	Length (bp)	Contig No.	(bp)							LAI score	ploidy	Mapping		Mapping	Error	CGAL score	variants
				Complete genes		Duplicated genes		Fragmented genes				rate Error rate		rate	rate		
Canu_1kb	622,218,742	895	1,502,325	1,346	93.47%	183	12.71%	23	1.60%	7.04	1.24	96.02%	0.0061	91.73%	0.1661	-1.959E+06	4,243
Canu_35kb	585,785,283	655	2,258,674	1,345	93.40%	138	9.58%	29	2.01%	5.34	1.17	95.52%	0.0066	92.64%	0.1677	- 2.226E+06	5,043
SMARTdenovo_1kb	514,714,831	364	2,092,790	1,342	93.19%	100	6.94%	27	1.88%	7.02	1.03	98.42%	0.0080	92.38%	0.1678	-4.275E+06	5,940
SMARTdenovo_35kb	504,515,539	370	2,178,079	1,341	93.13%	100	6.94%	30	2.08%	6.73	1.01	98.35%	0.0082	92.20%	0.1679	- 5.869E+06	6,024
Flye_1kb	528,563,896	2947	295,613	1,344	93.33%	100	6.94%	31	2.15%	5.70	1.06	94.86%	0.0077	93.04%	0.1694	-2.536E+06	7,137
Flye_35kb	516,992,152	2548	385,290	1,336	92.78%	90	6.25%	31	2.15%	6.50	1.03	94.24%	0.0080	92.34%	0.1699	-2.726E+06	7,458
Marvel_35kb	537,615,613	730	1,202,845	1,180	81.94%	153	10.63%	32	2.22%	3.77	1.08	87.37%	0.0075	85.18%	0.1689	-4.451E+06	5,162
MaSuRCA_1kb	594,528,099	415	3,234,447	1,362	94.58%	201	13.96%	21	1.46%	9.27	1.19	94.91%	0.0060	91.57%	0.1656	- 1.774E+06	4,020
MaSuRCA_35kb	594,871,467	416	3,234,549	1,362	94.58%	200	13.89%	21	1.46%	9.31	1.19	94.92%	0.0060	91.49%	0.1655	-1.790E+06	4,017

Note: The best value of each assessment is highlighted in boldface.

Scaffolding: Hi-C Proximity Ligation

Chromosome conformation capture (3C) describes the structure of the genome within a cell; it's organization and structure. Better than microscopy, can tell us how close together (potentially interacting) some regions of the genome are (such as promoters and enhancers).

Hi-C: A highthroughput version of 3C is based a library preparation to build chimeric reads followed by short-read sequencing of paired-end reads. Creates a contact map of interactions correlated to spatial distance.

Scaffolding: Hi-C Proximity Ligation

Restriction digestion; streptavidin bead extraction; paired-seq.

)n d-seq.

Scaffolding: Amaranthus Hi-C Assembly

