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Abstract

Background: Eucalyptus pauciflora (the snow gum) is a long-lived tree with high economic and ecological importance.
Currently, little genomic information for E. pauciflora is available. Here, we sequentially assemble the genome of Eucalyptus
pauciflora with different methods, and combine multiple existing and novel approaches to help to select the best genome
assembly. Findings: We generated high coverage of long- (Nanopore, 174x) and short- (Illumina, 228x) read data from a
single E. pauciflora individual and compared assemblies from 5 assemblers (Canu, SMARTdenovo, Flye, Marvel, and
MaSuRCA) with different read lengths (1 and 35 kb minimum read length). A key component of our approach is to keep a
randomly selected collection of ~10% of both long and short reads separated from the assemblies to use as a validation set
for assessing assemblies. Using this validation set along with a range of existing tools, we compared the assemblies in 8
ways: contig N50, BUSCO scores, LAI (long terminal repeat assembly index) scores, assembly ploidy, base-level error rate,
CGAL (computing genome assembly likelihoods) scores, structural variation, and genome sequence similarity. Our result
showed that MaSuRCA generated the best assembly, which is 594.87 Mb in size, with a contig N50 of 3.23 Mb, and an
estimated error rate of ~0.006 errors per base. Conclusions: We report a draft genome of E. pauciflora, which will be a
valuable resource for further genomic studies of eucalypts. The approaches for assessing and comparing genomes should
help in assessing and choosing among many potential genome assemblies from a single dataset.

Keywords: long-read assembly; nanopore sequencing; hybrid assembly; genome assessment; assembly comparison;
Eucalyptus pauciflora; haplotig separation; genome polishing
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Eucalypts are widely distributed in Australia, including 3 genera,
Eucalyptus, Corymbia, and Angophora, and have ~800 species [1].
Eucalyptus pauciflora (NCBI:txid87676) (Fig. 1), also known as snow
gum, is a highly variable eucalyptus species that inhabits diverse
landscapes in southeastern Australia [1]. E. pauciflora can survive
from close to sea level to up to the tree line of the Australian
Alps, displaying the broadest altitudinal range in the eucalypt
genera [2-4]. Owing to its wide distribution and drought and cold
tolerance, E. pauciflora is used for carbon offset plantings, ecolog-
ical restoration, honeybee food source, and also has medicinal
uses [1, 5-11]. However, genomic resources for E. pauciflora are
currently very limited: there exists a single chloroplast genome
[12], 2 sets of microsatellite markers [13, 14], and 2 nuclear loci
used for phylogenetics [15]. The assembly of E. pauciflora genome
will assist in elucidating the genetic basis of drought and cold
tolerance in Eucalyptus.

Across the ~800 extant eucalypt species, there are only
2 genomes published: those for Eucalyptus camaldulensis and
Eucalyptus grandis [16, 17]. Both of these genomes were se-
quenced with a combination of Sanger sequencing and short-
read sequencing, and as a result both assemblies are somewhat
fragmented. There are 81,246 scaffolds in the E. camaldulensis as-
sembly [17]. While the E. grandis genome is highly contigous, as-
sembled to chromosome level, it still has 4,941 unplaced scaf-
folds [16]. New technologies, such as third-generation long-read
sequencing, have the potential to produce less fragmented as-
semblies at a fraction of the cost of previous methods. Never-
theless, many challenges still remain, not least of which is that
different genome assembly software, and small changes to the
parameters of a single piece of software, can produce substan-
tially different assemblies. In light of this, methods for choosing
the most accurate assembly from a set of possible assemblies
have become increasingly important.

Two metrics are commonly used to assess and compare
genome assemblies: contig N50 and BUSCO [18] (BUSCO, RRID:
SCR-015008) scores. The contig N50 is the size of the contig such
that >50% of the assembled nucleotides can be found in contigs
of that size or larger. The N50 is a measure of genome contiguity,
where a higher N50 suggests a genome that has been assembled
into fewer and larger contigs. All else being equal, we should pre-
fer genome assemblies with a larger N50, up to the point where
the N50is equal to the N50 of the chromosomes themselves. Per-
haps because of this, the N50 is one of the most widely reported
metrics in genome assembly. However, it is important to remem-
ber that the N50 measures contiguity, not accuracy. For example,
N50 scores may be artificially inflated by incorrectly linking con-
tigs [19, 20]. The BUSCO score estimates the proportion of highly
conserved orthologous genes that are present in assemblies.
The underlying assumption is that there exists a certain set of
highly conserved single-copy genes, the vast majority of which
we should expect to observe in single copies in any given hap-
loid genome assembly. BUSCO scores provide a very useful mea-
sure of genome assembly completeness (a component of accu-
racy), and in principle we should prefer genome assemblies with
BUSCO scores closer to 100%. One limitation of BUSCO scores is
that they assess only a very small proportion of the genome, typ-
ically ~1,000 highly conserved genes that represent <1% of the
total genome. Furthermore, by their nature these protein-coding
regions of the genome tend to be among the easiest to assem-
ble because they are usually single-copy regions. Hence, assem-
blies can have very similar BUSCO scores even if they differ con-

siderably in their assembly of the non-BUSCO genomic regions,
which means that it is sometimes difficult to use BUSCO scores
to distinguish among competing assemblies [21]. In this study,
we complement these commonly used measures with a range
of other metrics to assess and compare genome assemblies, and
we use these measures to choose the best draft assembly of
E. pauciflora.

One measure we propose is the assembly ploidy: the pro-
portion of the genome that is represented by haploid contigs.
One important problem in genome assembly is that we com-
monly represent the genome of diploid (or polyploid) organisms
as a haploid sequence. Traditionally, genome projects would al-
leviate this problem by sequencing highly inbred individuals
[22, 23], thus reducing the discrepancy between the diploid in-
dividual and the haploid representation. However, as genome
assembly has become more commonplace, we often want to
assemble the genomes of highly heterozygous individuals. For
example, heterozygosity in Eucalyptus is ~1% [24] and varies sub-
stantially along the genome [16]. The consequence of this is that
regions of low heterozygosity tend to be assembled into a single
collapsed haploid sequence, whereas regions of high heterozy-
gosity tend to be assembled into 2 haplotypes of the same re-
gion, which are usually labelled the “primary contig” (referring
to the longer of the 2 contigs) and the “haplotig” (referring to
the shorter of the 2 contigs) [25]. Although there has been some
progresses in estimating truly diploid assemblies [25, 26], most
assemblers still produce primary contigs and haplotigs with-
out labelling them as such [27, 28]. Crucially, unidentified hap-
lotigs may cause issues in the downstream analyses, because
many analyses assume that we have a haploid representation
of the genome. Because of this, we propose a novel and simple
(but imperfect) metric to measure the assembly ploidy, which
is simply the ratio of the assembly size to the estimated hap-
loid genome size. If the aim is to produce a haploid represen-
tation of a genome, then an assembly ploidy of 1 is preferable
(i.e., the assembly size should be equal to the estimated hap-
loid genome size). If the aim is to produce a diploid represen-
tation of a genome, then an assembly ploidy of 2 is preferable
(i.e., the assembly size should be double the estimated haploid
genome size). One limitation of this metric is that it is sensi-
tive to errors in the estimation of haploid genome size, and it is
also sensitive to errors in genome assembly (e.g., highly incom-
plete assemblies) that might affect the numerator. Nevertheless,
in combination with other measures, we show below that the as-
sembly ploidy provides a useful metric for comparing genome
assemblies.

We also apply a suite of measures designed to provide a
genome-wide assessment of contiguity and accuracy that can
complement the widely used contig N50 and BUSCO scores. The
advantages of these measures lie in the fact that they assess
more of the genome than BUSCO scores, although each also has
its limitations. Several tools have been developed to evaluate the
quality of assemblies given an alignment of sequencing reads
to the assembly, including FRCbam (FRCbam, RRID:SCR-005189)
[29], REAPR (Recognition of Errors in Assemblies using Paired
Reads, RRID:SCR-017625) [30], and CGAL (Computing Genome
Assembly Likelihoods, RRID:SCR.017624) [20]. All of these tools
require read alignment information. FRCbam first computes a
series of features with the alignment information and then cre-
ates feature response curves that can be used to assess and
compare assemblies. REAPR uses the read alignment to iden-
tify possibly misassembled regions and to give a score for the
accuracy of each base in the genome. CGAL provides the likeli-
hood of an assembly, calculated from a model that accounts for
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Figure 1: The E. pauciflora sequenced in this study. This E. pauciflora is located in Thredbo, Kosciuszko National Park, New South Wales, Australia (36 29.6597 N, 148
16.9788 E).

errors in reads, read coverage across the assembly, and the pro-
portion of reads that do not contribute to the assembly. Of these
3 related tools, we use CGAL in this study because it provides
a single likelihood score for each assembly, such that a higher
likelihood from CGAL suggests that a genome assembly is a bet-
ter representation of the truth, making it very simple to com-
pare multiple assemblies. The second measure we used is the
long-terminal repeat (LTR) assembly index, or LAI (LTR retriever,
RRID:SCR.017623) [21]. The LAI score is the proportion of LTR se-
quences in the genome that are intact, and is independent of
genome size and repeat content. In general, a higher LAI score
suggests a more contiguous and complete assembly [21]. The
third measure we use is the base-level error rate evaluated by
re-mapping independent sets of long and short validation reads
(~10% of all reads, randomly selected) to the assembly. Previous
studies have evaluated the base-level error rate by re-mapping
all reads to the assembly [31, 32]. Here, we use validation reads
that are not involved in the assembly, in order to avoid any pos-
sible biases introduced by validating an assembly with the same
data that were used to produce it. For a perfect assembly in
which the ploidy of the entire assembly matches the ploidy of
the individual, a lower base-level error rate is preferable, with a
theoretical minimum of the error rate of the sequencing tech-
nology (e.g., ~0.3% for raw Illumina reads [33] and ~10-15% for
raw Nanopore reads [34, 35]). For a haploid representation of a
diploid assembly, the minimum possible base-level error rate
will be higher because by necessity a haploid representation of
a heterozygous site will not match approximately half of the
reads. In this case, the theoretical minimum base-level error
rate is the sum of the error rate of the sequencing technology

and half of the heterozygosity. The fourth measure we use is
the number of structural variants detected when re-mapping
our long validation reads to assemblies. As with the base-level
error rate, if the ploidy of the assembly matches the ploidy of
the individual, then the theoretical minimum of this metric is
the structural error rate introduced into sequencing reads by
the sequencing technology. For a haploid representation of a
diploid genome, the theoretical minimum is the sum of the er-
ror rate of the technology plus half of the structural heterozygos-
ity. These 2 quantities are rarely known, but nevertheless, a very
high structural error rate of validation reads mapped to a hap-
loid assembly may indicate cases in which the assembly has a
large proportion of incorrectly linked contigs. The final measure
is the genome sequence similarity of each assembly when com-
pared to all other assemblies. This measure does not provide
any information relative to an underlying truth, but it may help
to identify significant differences between otherwise plausible
genome assemblies that can aid in choosing the best assembly.
The selection of the best assembly should consider all measures
together.

Here, we used long and short reads to create a draft haploid
assembly of the E. pauciflora genome. We use the metrics we de-
scribe above to compare a range of assemblies from a range of
different assemblers. We performed different assemblies with
long-read-only assemblers (Canu [Canu, RRID:SCR_015880] [36],
SMARTdenovo [SMARTdenovo, RRID:SCR-017622] [37], Flye [Flye,
RRID:SCR.017016] [38], and Marvel [Marvel, RRID:SCR.017621]
[39]) and a hybrid assembler, MaSuRCA (MaSuRCA, RRID:SCR-010
691) [40], using long-read datasets with different minimum read
lengths in each case (1 and 35 kb).
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We collected leaves from the single E. pauciflora tree near
Thredbo, Kosciuszko National Park, New South Wales, Australia
(3629.6597 N, 148 16.9788 E) in March 2016 (for Illumina sequenc-
ing) and June 2017 (for MinION sequencing). We stored leaves at
4°C when transporting them to the laboratory.

For long-read sequencing, we extracted high molecular
weight genomic DNA from leaves following a protocol optimized
for Eucalyptus nanopore sequencing [41]. We prepared Oxford
Nanopore Technologies 1D ligation libraries according to the
manufacturer’s protocol, SQK-LSK108 (Oxford Nanopore Tech-
nologies Ltd, Oxford, United kingdom), and sequenced the reads
using MinKNOW v1.7.3 with R9.5 flowcells on a MinION se-
quencer. We performed base calling with Albacore v2.0.2 (Al-
bacore, RRID:SCR_015897). This resulted in 12,584,100 raw long
reads (106.96 Gb) with average read length of 8.5 kb. We re-
moved adapters from long reads with Porechop v0.2.1 (Pore-
chop, RRID:SCR_016967) [42]. Next, we trimmed bases with qual-
ity <10 on both ends of the reads using NanoFilt v2.0.0 (NanoFilt,
RRID:SCR_016966) [43] and discarded reads shorter than 1 kb af-
ter trimming. This recovered 96.66 Gb of long-read data com-
prising 7,711,141 filtered reads with an average read length of
12.53 kb (minimum 1 kb and maximum ~150 kb). Given an esti-
mated genome size of 500 Mb (see below), this represents a cov-
erage of 193x.

For short-read sequencing, we extracted genomic DNA from
freeze-dried leaves using a CTAB protocol [44] followed by pu-
rification with a Zymo kit (Zymo Research Corp, Irvine, Califor-
nia, United States). We constructed TruSeq Nano libraries with
an insert size of 400 bp using protocol provided by Illumina,
then sequenced the reads (paired-end 150 bp) using an Illu-
mina Hiseq2500 platform (I[llumina Inc., San Diego, California,
United States). This Illumina sequencing generated 506,840,789
paired raw reads (152.05 Gb). We used BBDuk v37.31 (BBmap,
RRID:SCR_016965) [45] to remove adapters and to trim both sides
of raw short reads for which quality was <30. We discarded fil-
tered reads with length <50 bp. Approximately 122.69 Gb short-
read data containing 414,697,585 paired reads were left, repre-
senting 246 x coverage with an estimated genome size of 500 Mb
(see below).

We used GenomeScope (GenomeScope, RRID:SCR.017014) [46]
and SGA-preqc (SGA, RRID:SCR_001982) [47] to estimate the E.
pauciflora genome size. We first generated a 32-mer distribution
using Jellyfish v1.1.12 (Jellyfish, RRID:SCR_005491) [48] from all of
our short reads, then ran GenomeScope using this 32-mer dis-
tribution with a maximum k-mer coverage of 1,000x. This gave
a genome size estimate of 408.16 Mb (Fig. S1), which is lower
than expected for other Eucalyptus species [16, 17]. However, it
is known that genomic repeats can lead to underestimation of
genome sizes from uncorrected k-mer distributions [49], and the
Eucalyptus genome is repeat-rich, e.g., ~50% of genome was an-
notated as repeats in E. grandis [16], suggesting that 408.16 Mb
may be a significant underestimate of the genome size. Also,
GenomeScope suggests that the heterozygosity of E. pauciflora
is 1.5%. SGA-preqc estimates genome size from k-mer distribu-
tions that are corrected to attempt to better account for repeat
content; in line with this, SGA-preqc gave a genome size esti-
mate of 529.40 Mb. Because of this, we expect that the SGA-
preqc genome size is likely to be more accurate, and in what
follows we assume that the E. pauciflora genome size is ~500 Mb.

This suggests that the E. pauciflora genome may be ~30% smaller
than that of the other 2 sequenced Eucalyptus species, E. grandis
(691.43 Mb) [16] and E. camaldulensis (654.92 Mb) [17]. However,
the genome sizes of E. grandis and E. camaldulensis may be over-
estimated owing to the assembly and scaffolding of both haplo-
types at high-heterozygosity regions.

We separated our long-read and short-read data into assembly
and validation datasets by randomly assigning the trimmed and
filtered reads into the 2 datasets with custom scripts [50]. The
assembly dataset comprised 86.98 Gb of long-read data (174x
coverage) and 114.10 Gb of short-read data (228 x coverage). The
validation dataset comprised 9.67 Gb of long-read data (19x cov-
erage, 10% of total long reads) and 8.59 Gb of short-read data (17 x
coverage, 7% of total short reads).

Here, we compared 7 long-read-only assemblies and 2 hybrid as-
semblies. For each combination of data and genome assemb]er,
we followed the same genome assembly pipeline. We first used
the assembler to produce an initial assembly. Following this, we
identified and removed contigs from contaminant sequences
and then polished the resulting assembly. We then identified
and removed haplotigs from the assembly. Each assembly was
re-polished after haplotig removal. To select the best assembly,
we calculated the contig N50 with Quast v4.6.0 (QUAST, RRID:SC
R_001228) [19], BUSCO scores with BUSCO v3.0.2, and LAI scores
using the LTR.retriever pipeline [51]. After mapping the long
and short validation reads to the final assemblies (using Ngmlr
v0.2.6 [Ngmlr, RRID:SCR-017620] [52] for the former and Bowtie2
v2.3.4.1 [Bowtie2, RRID:SCR-016368] [53] for the latter), we cal-
culated the base-level error rate using QualiMap v2.2.1 (Qual-
iMap, RRID:SCR-001209) [54], the structural variant error rate
using Sniffles v1.0.8 (Sniffles, RRID:SCR_017619) [52], and CGAL
scores using CGAL. Finally, we performed whole-genome align-
ment between different assemblies with the NUCmer module of
MUMmer v4.0.0beta2 (MUMmerGPU, RRID:SCR_001200) [55].

Oxford Nanopore reads tend to have error rates of ~10-15%,
which can make assembly of uncorrected reads very challeng-
ing. To alleviate this, we first corrected the long-reads assembly
dataset with Canu v1.6 with default parameters except for set-
ting corMinCoverage to 8, meaning that read correction would
only be applied where >8 reads overlapped. We deemed this rea-
sonable given the very high coverage of our data (174x). We then
put the corrected long-read datasets into 2 sets for assembly.
The first dataset contained all corrected long reads, such that the
minimum read length was 1 kb (174 x of coverage). The second
dataset contained all corrected reads longer than 35 kb (~40x of
coverage). We refer to these datasets as the 1 kb and the 35 kb
datasets, respectively.

We first compared the performance of using corrected and
uncorrected long reads to assemble the genome with 2 efficient
assemblers, Flye v2.3.5 and wtdbg2 v2.5 (WTDBG, RRID:SCR_017
225) [56] (Supplementary Results). The results showed clearly
that corrected long reads produced better assemblies than un-
corrected long reads using Flye, while the differences with wt-
dbg2 were less pronounced (Table S1). Nevertheless, the Flye
assemblies with corrected reads were the best overall, so we
therefore decided to use corrected long reads for the rest of the
assemblies in the study.
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We attempted 8 long-read-only assemblies and 2 hybrid as-
semblies. Assemblies solely with long-read data were performed
on corrected reads of 2 read lengths (1 and 35 kb) using 4 long-
read assemblers: Canu v1.6 and v1.7, SMARTdenovo, Flye v2.3.5,
and Marvel v1.0. The Marvel assembly with 1 kb dataset was
not feasible because it required more disk space than we had
available, resulting in 7 successful long-read-only assemblies.
We used MaSuRCA v3.2.6 to perform hybrid assemblies with
both read length datasets (1 and 35 kb) each combined with the
short-read dataset. In what follows, we refer to these assem-
blies as Canu_1 kb, Canu_35 kb, SMARTdenovo_1 kb, SMARTde-
novo_35 kb, Flye_1 kb, Flye_35 kb, Marvel 35 kb, MaSuRCA_1 kb,
and MaSuRCA_35 kb. In general, we used default settings in all
assemblers, and an estimated genome size of 500 Mb where this
setting was required. For Canu assemblies, the 1 kb dataset was
assembled using Canu v1.6, whereas the 35 kb dataset was as-
sembled using Canu v1.7. We did not repeat the Canu.1 kb as-
sembly after Canu v1.7 was released because we no longer had
sufficient computational resources. For the Flye assembler, we
used the “nano-cor” parameter, which accounts for the use of
corrected nanopore reads. The chloroplast genome and mito-
chondrial genome were removed from each assembly by search-
ing for the relevant contigs using BLASTN v2.7.1+ (BLASTN,
RRID:SCR_001598) [57] with an E-value cutoff of <1 x 10-20. For
each assembly, we recorded the runtime in CPU hours, the raw
assembly length, and the N50 (Table 1).

Following initial assembly, we used Blobtools v1.0.1 (Blobtools,
RRID:SCR_017618) [58] to assess contamination in each genome
assembly. To do this, we first generated a hit file for each assem-
bly by searching all contigs against the NCBI non-redundant nu-
cleotide database using BLASTN v2.7.1+ (E-value < 1 x 107%°).
We then analysed the hit file for each assembly using Blobtools,
which provides taxonomic annotations and other diagnostic
plots to detect contamination in raw genome assemblies. The
top hit was streptophyta phylum, comprising 99.72-100% of the
hits in different assemblies (Fig. S2), indicating that there was
no potential contamination from a non-plant origin in each raw
assembly.

We polished each initial genome assembly to improve its ac-
curacy. For the Canu, SMARTdenovo, Flye, and Marvel assem-
blies (i.e., those built from long reads only), we polished first
with Racon v0.5 [59] using Ngmlr using the long-read assem-
bly dataset, and then with Pilon v1.22 (Pilon, RRID:SCR_014731)
[60] using Bowtie2 with the short-read assembly dataset. For the
MaSuRCA assemblies, we polished only with Pilon because Ma-
SuRCA is a hybrid assembler, and using error-prone long reads
to polish hybrid assemblies tends to induce more errors rather
than remove them (Table S2).

We ran each polishing algorithm for multiple iterations un-
til the accuracy of the resulting assembly stopped improving
or improved only slightly. We assessed the improvements us-
ing BUSCO scores and the base-level error rate by re-mapping
validation long and short reads to each assembly (mapped as
above). We evaluated the BUSCO scores using BUSCO with the
embryophyta_odb9 lineage (1,440 genes in total). Polishing with
Racon took between 2 and 12 iterations, and with Pilon between
3 and 10 iterations (Table S2).

Table 1: Raw (before polish and haplotig removal) assembly statistics

Largest
contig (bp)

Assembly time

Ns (%)

L50 GC (%)

N50 (bp)

contigs

Length (bp)
871,577,052
825,916,527
610,858,639

(CPU hours)*

Assembler

Short-read

A

Long-read

Assembly

39.18

39.18
39.29

39.27
39.12

259
158

Canu

>1kb

Canu.1kb

629,835

962,598
1,711,661
1,868,532

7,123,373
10,153,603

~300,000

2,867

(~174 %)

2,550

~50,000

Canu

(~40 x)
(~174 %)

>35 kb

Canu_35kb

107
91
652

255,434
352,050
795,971

1,885,174

1,304,720

6,287,341
9,494,401
2,755,662
2,407,003
6,453,759

12,224,271

729
70
5,930

586,903,502
596,007,484
561,349,738
649,061,435

~8,000
~4,000
~700
~500
~28,000
~23,000
~21,000

SMARTdenovo

Flye

SMARTdenovo
Flye

X
X
X

>35 kb (~40 x)
(~174 %)

>1kb

>1kb

SMARTdenovo_35kb

SMARTdenovo_1kb
Flye_1kb

39.17

448

4,145
1,181

1,311

X

(~40x)

(~40 x)
>1kb (~174 %)
>35 kb

>35kb

Flye_35kb

0.04
0.09

39.07
39.35

182
95

778,288,575
773,035,614

Marvel
MaSuRCA
MaSuRCA

X
~228x
~228x

>35 kb

Marvel 35kb
MaSuRCA_1kb
MaSuRCA_35kb

39.39

146

8,684,546

1,703

(~40x)

All long reads were corrected by Canu before assembly. The Canu correction step took ~200,000 CPU hours, which has not been included in the assembly runtime.

*With ~1 TB of RAM.

A
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Table 2: Assembly size and assembly ploidy during polishing and haplotig removal

Assembly Assembly Assembly Assembly Assembly
Stage 1 ploidy Stage 2 ploidy Stage 3 ploidy Stage 4 ploidy Stage 5 ploidy
Canu.1kb 871,577,052 174 893,781,515 179 645,703,255 1.29 622,473,836 1.24 622,218,742 1.24
Canu.35kb 825,916,527 1.65 847,395,928 1.69 605,520,689 121 586,032,599 117 585,785,283 117
SMARTdenovo_1kb 599,580,691 1.20 610,858,639 1.22 514,822,476 1.03 514,822,476 1.03 514,714,831 1.03
SMARTdenovo_35kb 575,805,356 1.15 586,903,502 117 504,644,753 1.01 504,644,753 1.01 504,515,539 1.01
Flye_1kb 596,007,484 1.19 593,219,654 1.19 529,107,244 1.06 528,619,533 1.06 528,563,896 1.06
Flye_35kb 561,349,738 112 561,597,192 112 517,329,093 1.03 517,061,277 1.03 516,992,152 1.03
Marvel 35kb 649,061,435 1.30 666,317,308 1.33 547,630,224 1.10 537,813,575 1.08 537,615,613 1.08
MaSuRCA_1kb 778,288,575 1.56 778,307,850 1.56 608,764,671 1.22 594,680,200 1.19 594,528,099 1.19
MaSuRCA _35kb 773,035,614 1.55 773,071,231 1.55 608,629,204 1.22 595,020,257 1.19 594,871,467 1.19

Stage 1: raw assembly size (bp) before polishing. Stage 2: assembly size (bp) after polishing. Stage 3: assembly size (bp) after Purge Haplotigs. Stage 4: assembly size (bp)
after Purge Haplotigs and GCICA (bp). Stage 5: assembly size (bp) after Purge Haplotigs and GCICA and extra polishing.

Polishing with both Racon and Pilon significantly improved
all of the raw genome assemblies, measured with base-level er-
rors in long and short reads, and with BUSCO scores (Table S2).
Polishing with Racon improved long-read base-level accuracy by
up to 0.83% (in the Marvel 35 kb assembly), short-read base-
level accuracy by up to 1.51% (also in the Marvel 35 kb assem-
bly), and the BUSCO completeness scores by up to 30.76% (in the
Flye_35 kb assembly). Polishing with Pilon further improved the
long-read base-level accuracy by up to 0.40% (in the Marvel 35 kb
assembly), the short-read base-level accuracy by up to 1.41% (in
the Flye_35 kb assembly), and the BUSCO completeness scores
by up to 24.44% (in the Flye_1 kb assembly).

Assembly ploidy and haplotig removal

Comparison of the polished genome assemblies revealed large
variation in assembly size (Table 2). We calculated the assem-
bly ploidy of each assembly as described above, assuming a
genome size of 500 Mb. The assembly ploidy ranges from 1.12
(Flye_35 kb assembly) to 1.79 (Canu-1 kb assembly) (Table 2), sug-
gesting that the Canu_1 kb assembly is close to a diploid assem-
bly (i.e., ~80% of the genome is represented by 2 contigs) and
that the Flye_35 kb assembly is close to a haploid assembly (i.e.,
only ~12% of the genome is represented by 2 contigs). To at-
tempt to produce haploid representations of the genome from
all assemblies, we used Purge Haplotigs (Purge_haplotigs, RRID:
SCR-017616) [28] and a custom pipeline, which we call gene con-
servation informed contig alignment (GCICA, RRID:SCR.017617)
(script available on Github from [61]), to find and remove hap-
lotigs from all the assemblies (Fig. 2A).

Purge Haplotigs assigns contigs to primary contigs and hap-
lotigs depending on both coverage information generated by
long-read mapping and pairwise alignments of all contigs. To
run Purge Haplotigs, we first mapped the long-read assembly
dataset to each polished assembly using Ngmlr and then sep-
arated the contigs into primary contigs and haplotigs with de-
fault settings. A total of 8-29% of each genome assembly (after
polishing) was annotated as haplotigs, and removing these hap-
lotigs reduced the assembly ploidy from 1.12-1.79 to 1.01-1.24
(Table 2).

The high assembly ploidy for some assemblies after running
Purge Haplotigs suggested that these assemblies retained hap-
lotigs that covered up to 29% of the genome. We therefore fur-
ther filtered possible haplotigs using a custom approach, GCICA.
If a pair of contigs comprise a primary contig and a haplotig,
we would expect most of the regions of the haplotig to be very
similar to that of the primary contig. To find putative pairs of pri-
mary contigs and haplotigs, we therefore looked for pairs of con-
tigs with similar gene content, and then examined these pairs
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Figure 2: A. The length of primary contigs and haplotigs between different as-
semblies. B. The comparison of complete BUSCO genes (1,440 in total) between
different primary contigs. C. The comparison of duplicated BUSCO genes be-
tween different primary contigs.
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Table 3: The comparison of final assemblies

Structural

Long-read mapping

Short-read mapping

Assembly

BUSCO score (1,440 genes in total)

Contig N50

variants

Error CGAL score

rate

Mapping

Mapping

ploidy

LAI score

Contig No. (bp)

Length (bp)

Assembly

Error rate rate

rate

Duplicated genes Fragmented genes

Complete genes

—1.959E+06
— 2.226E+06
—4.275E+06
— 5.869E+06
—2.536E+06
—2.726E+06
—4.451E+06
—1.774E+06
—1.790E+06

0.1661
0.1677
0.1678
0.1679
0.1694
0.1699
0.1689
0.1656
0.1655

91.73%
92.64%
92.38%
92.20%
93.04%
92.34%
85.18%
91.57%
91.49%

0.0061
0.0066
0.0080
0.0082
0.0077
0.0080
0.0075
0.0060
0.0060

96.02%
95.52%
98.42%
98.35%
94.86%
94.24%
87.37%
94.91%
94.92%

24
1.17

7.04 1.

1.60%
2.01%
1.88%
2.08%
2.15%
2.15%
2.22%
1.46%
1.46%

23

12.71%

1,502,325
2,258,674
2,092,790
2,178,079
295,613
385,290
1,202,845
3,234,447
3,234,549

895
655

742
283
831

34
02

5.

29

9.58%
6.94%
6.94%
6.94%
6.25%
10.63%
13.96%
13.89%

7.

27

100
100

100

364
370
2947
2548

6.

30

539
896

1.06

5.70
6.50
3.77
9.27
9.31

31

93.33%

31

90
153
201

152
613
099
467

1.08

32
21

730
415
416

020

4,
4,

1.19
1.19

94.58%
94.58%

362
362

1
1

017

21

200

622,
585
514,
504,
528,
516,
537
594,
594,

Canu-1kb

Canu-35kb

SMARTdenovo_1kb

SMARTdenovo_35kb

Flye_1kb

Flye_35kb

Marvel 35kb

MaSuRCA_1kb
MaSuRCA_35kb

Note: The best value of each assessment is highlighted in boldface.

in more detail. To do this, we first mapped the nucleotide se-
quences of all E. grandis genes to all contigs in an assembly us-
ing BLASTN (E-value < 1 x 107°). If >70% of mapped markers
in a contig could also be mapped to another contig, and >80%
of sequence of the smaller contig could be aligned to the other
contig (detecting with NUCmer module of MUMmer), we con-
sidered these 2 contigs as a putative primary contig and hap-
lotig pair. We then examined the alignments of all such pairs
by eye and removed any pairs in which the smaller contig ap-
peared to be completely contained within the larger, ie., in
which the smaller contig was an unambiguous haplotig. This
process identified a further ~0-2% of each assembly as haplotigs
(Table 2).

Following removal of haplotigs, we re-evaluated each assem-
bly using BUSCO scores (Fig. 2B and C). We noted that, depend-
ing on the genome assembly, the number of complete BUSCO
genes sometimes decreased and sometimes increased slightly
after removal of haplotigs (Fig. 2B). We hypothesized that BUSCO
scores could decrease either because haplotig removal mistak-
enly removed a contig that was not a haplotig or because hap-
lotig removal correctly removed a haplotig that contained a
more conserved representation of a BUSCO gene. BUSCO scores
could increase because they are based on E-value scores of
alignments, which may be affected by the total length of the
assembly. To attempt to alleviate some of these potential is-
sues, we re-polished all of the genome assemblies with multi-
ple rounds of Pilon using the short-read assembly dataset, as
above. BUSCO scores recovered across all assemblies with addi-
tional Pilon polishing (Fig. 2B). As expected, the number of du-
plicated BUSCO genes decreased substantially (~50-70%) after
haplotigs were removed from the assemblies and this did not
change substantially after additional polishing (Fig. 2C and Ta-
ble S3). Together, these results suggest that our haplotig removal
pipelines largely succeeded in removing haplotigs, although
some haplotigs likely remain if the true genome size is ~500 Mb
(Fig. 2A).

After haplotig removal and polishing, we considered the pri-
mary contigs of each assembly as the final assembly, and eval-
uated each of the final assemblies by means of the 8 statis-
tics we describe above: contig N50, BUSCO score, LAI score,
assembly ploidy, base-level error rate, CGAL score, structural
variation, and genome sequence similarity (Table 3 and Figs 3
and 4).

Comparison of the 8 metrics we used suggested that the Ma-
SuRCA_35 kb assembly was likely to be the most accurate as-
sembly overall and that the Marvel_35 kb assembly was the least
accurate. However, we note that the MaSuRCA assembly did not
receive the best scores for all metrics, suggesting that the choice
of which assembly to use will sometimes be question-specific.
Also, in most cases, performances of the 2 MaSuRCA assemblies
are very similar.

N50 scores varied from 295 kb (Flye.1 kb) to 3.2 Mb (Ma-
SuRCA_35 kb), with Flye achieving notably lower N50 values
than the other assemblers (Table 3). The low N50 in Flye as-
semblies is likely to be caused by the high heterozygosity of
E. pauciflora because Flye is based on using k-mers to build
an assembly graph, and high heterozygosity will cause differ-
ences even among short k-mers. BUSCO scores ranged from
1,180 complete genes (81.94%, Marvel 35 kb) to 1,362 com-
plete genes (94.58%, MaSuRCA assemblies), although all as-
semblies except the Marvel 35 kb assembly had scores >92%.
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Figure 3: Structural variation analysis of different assembly primary contigs. Each variant was supported by >10 long reads. A. The total event of each structural variant
of each assembly. B. The insertion event of each assembly. C. The translocation event of each assembly. D. The deletion event of each assembly.

Canu_1kb

Query
Reference—

Canu_1kb
Canu_35kb
SMARTdenovo_1kb
SMARTdenovo_35kb
Flye 1kb

flye_35kb
Marvel_35kb
MaSuRCA_1kb
MaSuRCA_35kb

Canu_35kb  SMARTdenovo_lkb SMARTdenovo_35kb

Flye_1kb Flye 35kb  Marvel 35kb MaSuRCA_1kb MaSuRCA_35kb

91.11%

99.99%

Figure 4: The sequence coverage of whole-genome alignment among different assemblies. The sequence coverage was calculated by the length of aligned reference

sequence/the total length of reference genome.

The MaSuRCA_35 kb assembly also achieved the highest LAI
score (9.31), which was substantially higher than the best as-
sembly from any other assembler (Canu-1 kb, LAI score: 7.04).
The lowest LAI score (3.77) was observed in the Marvel 35 kb
assembly. The assembly ploidy was the closest to 1 for the
SMARTdenovo assemblies (e.g., 1.01 for the SMARTdenovo_35 kb
assembly vs 1.19 for the MaSuRCA_35 kb assembly). These
scores have to be interpreted with caution because the true
genome size remains unknown; they are to some extent cor-
roborated by the lower number of duplicated BUSCO genes in
the assemblies with the lower assembly ploidy (e.g., 100 du-
plicated BUSCO genes in the SMARTdenovo_35 kb assembly
vs 200 in the MaSuRCA_35 assembly). Nevertheless, given that
gene duplication is common in Eucalyptus species, all such mea-
sures need to be interpreted with some caution because the
BUSCO genes themselves could be duplicated in the E. pau-
ciflora genome. Taken together, these 4 metrics suggest that

the MaSuRCA_35 kb assembly is the most complete, the most
contiguous, and the most accurate among the assemblies we
produced.

The other 3 metrics assess the correctness of every assem-
bly, and they also suggest that the best assemblies for our
data were produced by MaSuRCA (Table 3). The MaSuRCA as-
semblies (1 and 35 kb) had the lowest error rates (0.006 er-
rors per base for short-read mapping and 0.166 for long-read
mapping in both assemblies) and the smallest total num-
ber of structural variants estimated from the long validation
reads (4,017 structural variants for the MaSuRCA_35 kb as-
sembly). Flye and SMARTdenovo assemblies tended to perform
the worst on these metrics, although we note that these re-
sults will be affected by the fact that the MaSuRCA assem-
blies contain more duplicated genome regions (see above),
which will tend to reduce the estimated error rates and num-
ber of structural variants, because duplicated regions can
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Figure 5: A. The histogram of location and coverage of E. pauciflora genome aligned to the 11 chromosomes of E. grandis. The scale of the y-axis is 0-2x of coverage.
Every bar is 1 Mb. The coverage was calculated by the total aligned length of E. grandis in each bar/the length of bar. If a site in E. grandis is aligned by E. pauciflora twice
or more, this site will be counted twice or more. B. Repeat landscape comparison between E. pauciflora and E. grandis. Only repeats that are found in both genomes are
shown. Older repeat insertions could accumulate more mutations compared to new repeat insertions. This leads older repeat insertions to have accumulated a higher

level of divergence (shown on the right side of the graph).

accurately represent heterozygous variants that will be present
in the reads. CGAL ranked MaSuRCA assemblies as the best
(1 kb likelihood: —1,774,303 and 35 kb likelihood: —1,790,386)
and the SMARTdenovo_35 kb assembly as the worst (likelihood:
—5,869,476).

Finally, to further investigate the different assemblies, we
compared the genome sequence similarity between different as-
semblies using the NUCmer module of MUMmer (Fig. 4), with the
minimum identity set to 75. Notably, ~8% of the sequence of the
Canu/SMARTdenovo/Flye/MaSuRCA assemblies failed to align to
the Marvel 35 kb assembly (Fig. 4), which, along with the low
genome completeness (BUSCO scores) of the Marvel 35 kb as-
sembly (Table 3), suggests that the Marvel 35 kb assembly may
contain many more small duplicated regions than other assem-
blies. In turn, these duplicated regions may explain the fact that
the Marvel 35 kb assembly has the lowest genome completeness
but not the smallest genome size compared to other assemblies
(Table 3). Other assemblies have ~97-99% of similarity to each
other.

Based on the 8 metrics we used above (Table 3), we sug-
gest that the MaSuRCA_35 kb assembly represents the most
accurate representation of the E. pauciflora genome. We note,
however, that the Flye assembler only took 1-3% of the
runtime of the other assemblers used in this article (Ta-
ble 1) and produced genome assemblies that were of sim-
ilar quality to the MaSuRCA_35 kb assembly in many re-
spects. The Marvel 35 kb assembly received the worst scores
on many metrics and also seems to be missing ~10% of
the genome according to BUSCO scores and genome se-

quence similarity analyses compared to other assemblies
(Table 3).

Comparative genome analysis between E. pauciflora
and E. grandis

Using the MaSuRCA _35 kb assembly, we estimate that the E. pau-
ciflora genome is 594,871,467 bp in length, with 416 contigs and
a contig N50 of 3,235 kb. The genome has up to 0.006 errors per
base. Approximately 94% of complete BUSCO genes were iden-
tified in this E. pauciflora genome assembly.

E. grandis is the only published Eucalyptus genome that is as-
sembled to chromosome level. We therefore compared E. grandis
with our E. pauciflora genome. The E. grandis contains 691.43 Mb
of sequence, ~16% larger than the E. pauciflora genome. We com-
pared these 2 genome assemblies using the NUCmer module
of MUMmer to perform whole-genome alignment as described
above. This alignment shows that the E. pauciflora genome as-
sembly covers just 61.56% of the E. grandis genome sequence,
leaving ~265 Mb of the E. grandis genome sequence not covered
by the E. pauciflora assembly and 113 Mb of the E. pauciflora as-
sembly not covered by the E. grandis assembly. Despite this, the
coverage of the E. pauciflora assembly when mapped to the 11
chromosome-scale scaffolds of the E. grandis genome is fairly
constant (Fig. 5A), suggesting that many of these differences re-
sult either from small errors in both assemblies and/or from rel-
atively small-scale differences in the underlying genomes.

To examine whether the differences between E. pauciflora
and E. grandis could be explained by their repeat content, we
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annotated repetitive elements of E. pauciflora and E. grandis with
RepeatMasker v4.0.7 (RepeatMasker, RRID:SCR.012954) [62]. Al-
though the repeats of E. grandis have been annotated before [16],
we re-annotated them here to make a direct comparison of the
repeat content using an identical pipeline for both genomes.
First, we created the custom consensus repeat library using Re-
peatModeler v1.0.11 (RepeatModeler, RRID:SCR_015027) [63] with
parameter “-engine ncbi.” The classifier was built upon Repbase
v20170127 [64]. Then we merged the repeat libraries from Re-
peatModeler and LTR retrotransposon candidates from LTR re-
triever to create a comprehensive repeat library as the input
for RepeatMasker. We ran RepeatMasker with the “-engine ncbi”
model. We used the "calcDivergenceFromAlign.pl” script in the
RepeatMasker pipeline to calculate the Kimura divergence val-
ues, and plotted the repeat landscape with repeats presented in
both E. pauciflora and E. grandis genomes (Fig. 5B).

The repeat content of the 2 genomes is similar. The E. pauci-
flora genome contains 44.77% of repetitive elements, compared
to 41.22% in E. grandis. Retrotransposons account for 29.53% of
theE. pauciflora genome, and 26.94% in E. grandis, and DNA trans-
posons account for 6.04% and 4.80% of the genome in E. pauciflora
and E. grandis, respectively. Both genomes show ~2 waves of re-
peat expansion in the repeat landscapes, which is most likely
explained by a shared inheritance of most of the repeats in the
2 genomes (Fig. 5B).

Here, we report a high-quality draft haploid genome of E. pau-
ciflora. It is the first Eucalyptus genome assembled with third-
generation sequencing reads (Nanopore sequencing) and is the
third nuclear genome of Eucalyptus species. Due to the eco-
nomic and ecological importance of Eucalyptus, this high-quality
genome will support further analysis on Eucalyptus and its re-
lated species. Finally, the approaches used in this study to assess
and compare different assemblies should help in assessing and
choosing among many potential genome assemblies.

The E. pauciflora genome project was deposited at NCBI un-
der BioProject number PRJNA450887. The whole-genome se-
quencing data are available in the SRA with accession num-
ber SRR7153044-SRR7153116. The scripts we used in this arti-
cle, including the genome assembly, genome polishing, repeat
annotation, and genome assessments, are available on Github
[65]. Also, a single universal pipeline containing the assessment
methods we used in this article is available on Github [66]. All
supporting data and materials are available in the GigaScience
GigaDB database [67].

Fig. S1. GenomeScope result of E. pauciflora

Fig. S2. Genome contamination detection. Almost all sequences
were matched to the sequences in the streptophyta phylum
group. No contamination was found.

Supplementary Results

Table S1. The comparison of assemblies with corrected and un-
corrected long-read datasets

Table S2. The comparison of polishing results of raw assemblies
Table S3. The comparison of polishing results of each genome
after haplotig removal

bp: base pairs; BUSCO: Benchmarking Universal Single-Copy Or-
thologs; CGAL: computing genome assembly likelihoods; CPU:
central processing unit; CTAB: cetyl trimethylammonium bro-
mide; Gb: gigabase pairs; GCICA: gene conservation informed
contig alignment; kb: kilobase pairs; LAI: long-terminal repeat
assembly index; LTR: long-terminal repeat; MaSuRCA: Maryland
Super Read Cabog Assembler; Mb: megabase pairs; NCBI: Na-
tional Center for Biotechnology Information; RAM: random ac-
cess memory. REAPR: Recognition of Errors in Assemblies using
Paired Reads; SRA: Sequence Read Archive.
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