Fundamentals of Evolution

Session 6 -

Bayesian phylogenetics & big trees




Recap of last session

History of systematics and phylogenetics

Tree thinking

Character analysis; synapomorphy, homoplasy
Parsimony methods for phylogenetic inference
Distance methods for phylogenetic inference
Likelihood methods for phylogenetic inference



Recap of last session

Phylogenetic relationships are based on shared derived
characters (synapomorphies).
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Recap of last session

Most inference methods infer unrooted trees, by
counting/estimating changes along branches, and thus do not
require us to know which trait is derived vs. ancestral.
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Recap of last session

Based on other knowledge we can then root the tree, which
provides polarization to the characters, so we know which is
derived versus ancestral.
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Recap of last session

Homoplasy is a pattern of independent evolution of a character
multiple times. It can be caused by parallel evolution of homologous
characters, or be visualized by mapping convergently evolved
characters (non-homologous characters) on the tips of a phylogeny.
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Recap of last session

The Likelihood of the data depends on the (branching order),
, and

A maximum likelihood optimization finds the best fitting parameters of the
model (e.g., a substitution matrix) to estimate branch lengths on a given
topology. The tree likelihood is the product of all site likelihoods.

A tree search repeats this process for many or all topologies.



Maximum likelihood estimation

First 32 nucleotides of the yn-globin gene of gorilla and orangutan:

gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG
orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

L = [(3) G+ =)V [(1) (3-gete)]’
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Recap of last session

Think about the logical steps involved in inferring a
phylogeny, and at least one example of each:

e Starting tree (e.g, UPGMA, NJ)

e Optimality criterion (e.g., parsimony, likelihood)

e Heuristic search of tree space (e.g., Hill-climbing)
e ftree rearrangements (e.g, NNI, SPR)

What are pros/cons of using parsimony vs. likelihood?



Reconstructing Evolution |l

Bayesian inference and dated phylogenies

Large-scale phylogenetics: Tree of Life
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Bayesian philosophy

Frequentist (Maximum Likelihood) asks “what is the probability of the data
given my hypothesis (model)?”

Bayesian inference asks “What is the probability of my hypothesis (model)
given the data?”

Likelihood says, assuming my model is true, what is the probability it
generated these data?

Bayesian says, assuming my prior beliefs about this model, how much should
| be convinced by new evidence (what is the posterior probability)?
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http://www.youtube.com/watch?v=gRvu0yHoHy8
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Joint probabilities
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Conditional probabilities
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Bayes’ rule

Pr(B, D) ——___ \

Pr(D) Pr(B|D) = Pr(B) Pr(D|B)
1 2 3 1
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Pr(D)
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Probability of "Dotted"
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Bayes' rule (cont.)

Pr(B) Pr(D|B)
Pr(D)
Pr(D, B)
Pr(D, B) + Pr(D, W)

Pr(B|D) =

Pr(D) is the marginal probability of being dotted
To compute it, we marginalize over colors
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Bayes' rule (cont.)

It is easy to see that Pr(D) serves as a normalization
constant, ensuring that Pr(B|D) + Pr(W|D) = 1.0

Pr(D, B)

Pr(BID) = Pr(D, B) +Pr(D,W) <— Pr(D)

Pr(D, W)
Pr(D, B) + Pr(D, W) <— Pr(D)

Pr(W|D) =

Pr(D W)
Pr(D , W) B

Pr(B|D) + Pr(W|D) =
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Joint probabilities

B \%Y
Pr(D.B) | Pr(D,W)
Pr(S,B) | PrS,wW)
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Marginalizing over colors

&

Marginal probability of
being a dotted marble
is the sum of all joint

probabilities involving

dotted marbles
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Bayes’ rule in statistics

Likelihood of hypothesis 6 Prior probability of hypothesis 6

\

Pr(D|0) Pr(6)

B0 2] —
>_p Pr(D|0) Pr(0)
\ Marginal probability
Posterior probability of the data (marginalizing
of hypothesis 6 over hypotheses)

24



Bayes' rule in Statistics

~ Pr(D|0) Pr(6)
Pr(0|D) = S, Pr(D|6) Pr(6)

D refers to the "observables" (i.e. the Data)
@ refers to one or more "unobservables"

(i.e. parameters of a model, or the model itself):
tree model (i.e. tree topology)
substitution model (e.qg. JC, F84, GTR, etc.)

parameter of a substitution model (e.g. a branch length, a
base frequency, transition/transversion rate ratio, etc.)

hypothesis (i.e. a special case of a model)
a latent variable (e.g. ancestral state)
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Why is Bayesian analysis useful for phylogenetics?

Phylogenies with branch lengths in units of time provide more information
than unrooted trees with branch lengths in units of substitutions.

0.03 substitutions/site = Oligocene | Miocene |2 §
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Sequence data provide -

information about branch ge

lengths

In units of the expected # of =
substitutions per site ———

Phylogenetic Relationships

branch length = rate x time
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The sequence data %l
provide information R A0

about branch length 2 sl
o
for any p955|b|e rate, 8, T
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the branch length Al
perfectly
. , . : ——
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Branch Time

(figure based on Thorne & Kishino, 2005)

Methods for dating species divergences estimate the
substitution rate and time separately
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Methods for dating species divergences estimate the
substitution rate and time separately

a Prior f(t,r) b Likelihood L(D|t,r) ¢ Posterior f(t,r|D)

Rate, r (x 10°° s/s/My)

40 50 ] 10 20 i0 40 50 0 10 20 30 40 50

Time, t (Ma) Time, t (Ma) Time, t (Ma)

(dos Reis et al. Nature Reviews Genetics, 201 6)

Tree-time priors for molecular phylogenies are only
informative on a relative time scale
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Bayes' rule in Statistics

~ Pr(D|0) Pr(6)
Pr(0|D) = S, Pr(D|6) Pr(6)

D refers to the "observables" (i.e. the Data)
@ refers to one or more "unobservables"

(i.e. parameters of a model, or the model itself):
tree model (i.e. tree topology)
substitution model (e.qg. JC, F84, GTR, etc.)

parameter of a substitution model (e.g. a branch length, a
base frequency, transition/transversion rate ratio, etc.)

hypothesis (i.e. a special case of a model)
a latent variable (e.g. ancestral state)
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Naive integration approach
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Markov chain Monte-Carlo (MCMC)

Heuristic method of integrating across marginal probabilities. Mechanistic
algorithm to search parameter space where the proportion of steps spent
in any part of search space reflects the posterior probability support for
that parameter. The result is a posterior probability distribution.
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MCMC robot’s rules

Drastic “off the cliff”
Slightly downbhill steps downhill steps are almost
are usually accepted never accepted

\

With these rules, it
is easy to see why the
robot tends to stay near

the tops of hills
- J

Uphill steps are
always accepted
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f(R.A,0r,04,6 | D)

f(DIR,Ab) f(R|Or) f(A|B4) f(6)

f(D | R, A; 672; B.A:Gs)
f(R|6r)
f(A]84)

f(85)
f(D)

f(D)

Likelihood

Prior on rates

Prior on node ages

Prior on substitution parameters

Marginal probability of the data
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Marginalizing over colors

Marginal probability of
being a dotted marble
is the sum of all joint

probabilities involving

dotted marbles
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Trees

Trees

r~+Ac
Frates
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Global clock (Zuckerkandl & Pauling, 1962)

Local clocks (Hasegawa, Kishino & Yano 1989; Kishino &
Hasegawa 1990; Yoder & Yang 2000; Yang & Yoder 2003,
Drummond and Suchard 2010)

Punctuated rate change model (Huelsenbeck, Larget and
Swofford 2000)

Log-normally distributed autocorrelated rates (Thorne,
Kishino & Painter 1998; Kishino, Thorne & Bruno 2001; Thorne &
Kishino 2002)

Uncorrelated/independent rates models (Drummond et al.
2006; Rannala & Yang 2007; Lepage et al. 2007)

Mixture models on branch rates (Heath, Holder, Huelsenbeck
2012)
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The substitution rate is
constant over time

All lineages share the same
rate

(Zuckerkandl & Pauling, 1962)

branch length = substitution rate
low — Q0
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Lineage-specific rates are
uncorrelated when the rate
assigned to each branch is
independently drawn from
an underlying distribution

{Drummond et al. 2006: Rannala & Yang 2007
Lepage et al. 2007)

branch length = substitution rate
low —igh
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Common practice in Bayesian divergence-time estimation:

Parametric distributions are
typically off-set by the age
of the oldest fossil assigned : |

] unitorm (min, max)
to a clade :

A Log Normal (i, o)

These prior densities do not
(necessarily) require _A Gamma (. f)
specification of maximum :
boun dS A Exponential (A)

s3ddlddd
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Incorporating both fossils and DNA sequences, and informed priors on the
fossil placements, Gavryushkina et al. (2016) found the crown age of
extant penguins is much younger than previously thought.

Penguin images used with
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Even without fossils, time-informed priors
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Phylodynamics

The study of how epidemiological, immunological, and
evolutionary processes act and potentially interact to
shape viral phylogenies.

Bayesian phylogenetics is highly important because rate
varies dramatically during viral outbreaks
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Estimating the rate of infection of Ebola

B
The 2013 West African Ebola virus | 1 Guines
epidemic spread primarily through wE=
Guinea, Sierra Leone and Liberia 0
and killed over 11,000 people 10

Estimated that strain began at a
funeral in Guinea December 2013

Phylogenetic analysis shows MRCA
was February 2014 with 2 strains : T a— L . ,
introduced to Sierra Leone. a Monthof2014

Stephen K. Gire et al. Science 2014;345:1369-1372
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Estimating the rate of infection of Ebola

Multiple birth-death model
approaches were used to estimate

epidemiological parameters across BD @@6_“
a Bayesian phylogeny. BDss

BDsa
Birth is the rate of transmission, S I grn IR

is recovery or death of host. 8DSIR (3 [1)2+{(R) 5 = e
6 : lt-S : :::;::::—:::r\lecmm rate
2 * p — sampling probability

Incubation time: 4.92 days coatselR (S (B} LAR) 7 - o,
InfeCtiOUS periOd: 258 days Stadler T et al. PLOS Currents Outbreaks. 2014

RO: 2.18 people
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Summary of Bayesian phylogenetics

e Broadly applicable statistical framework that allows one to
combine data from many different sources through defining
priors.

e In practice, often used for dated phylogenies because with priors
on ages or rates you can better differentiate age from rate
(which cannot be done in ML)

e However, it can be rather slow (MCMC search)
e And if you define too strict of priors then your results may just
return what you put it. Requires careful testing/refining.
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Large-scale phylogenetics

Increasingly, phylogenetic and phylogenomics is a field
of informatics, or data science, and computer science.

Data archiving and mining. Researchers focus on
specific groups and over time accumulate enough data
to span deeper and deeper in time.

Methods for combining knowledge and minimizing the
need to optimization + tree search.

51



How many species are there?

nawure

microbiology

Article | OPEN

Recovery of nearly 8,000 metagenome-
assembled genomes substantially expands the
tree of life
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How many species are there?

Globally, our best approximation to the total
number of species, based on taxonomic expertise,
is 3-100 million species (May 2010).

Many methods are employed to estimate the
number of undiscovered/described species: e.g.,
body-size distribution, species-area relationship,
ratios between taxa, time-series relationships
(Mora et al. 2011)
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Species Earth Ocean

Catalogued Predicted +SE Catalogued Predicted +SE
Eukaryotes
Animalia 953,434 7,770,000 958,000 171,082 2,150,000 145,000
Chromista 13,033 27,500 30,500 4,859 7,400 9,640
Fungi 43,271 611,000 297,000 1,097 5320 11,100
Plantae 215,644 298,000 8,200 8,600 16,600 9,130
Protozoa 8,118 36,400 6,690 8,118 36,400 6,690
Total 1,233,500 8,740,000 1,300,000 193,756 2,210,000 182,000
Prokaryotes
Archaea 502 455 160 1 1 0
Bacteria 10,358 9,680 3,470 652 1,320 436
Total 10,860 10,100 3,630 653 1,320 436
Grand Total 1,244,360 8,750,000 1,300,000 194,409 2,210,000 182,000

Predictions for prokaryotes represent a lower bound because they do not consider undescribed higher taxa. For protozoa, the ocean database was substantially more
complete than the database for the entire Earth so we only used the former to estimate the total number of species in this taxon. All predictions were rounded to three

significant digits.
doi:10.1371/journal.pbio.1001127.t002

(Mora et al. 2011)
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Large-scale phylogenetics

Super trees:

Inferring large trees is difficult
and time consuming, it is
easier to join together smaller
trees. Several techniques.

This type of method has
regained some popularity
recently in the study of quartet
trees (e.g., SVDquartets)
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representation.
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Large-scale phylogenetics

e Supermatrices: o %,
\\« ';{
3 Viridiplantae \;{//
e Around the early 2000s common e

markers were discovered that e
could be sequenced reliably T 2

across many organisms, which 7 ’
y g ’ ‘ ‘;“ss “\a‘?\t:\sdp\es\s R é

. . . . 7 Nt oS %
made it possible to combine their s TR
data into larger analyses. Faster 7 ;\\ AR
inference methods developed. ,/'g :

L

e Hundreds of taxa, one or more
geneS' Sparse matriceS' Foe oo for 13,533 species of green plants based on rbcL DNA sequences. The data matrix

was constructed using thre mega-phylogeny method; major clades are labeled and denoted with a star.




Large-scale phylogenetics

S T
Megaphylogeny pipelines: # "*

. ¥ %
Automated procedures to build g/ Viidplantae \~
supermatrices by finding E Z &

sequences in databases and e

aligning them at multiple !.

hierarchical levels. /&
&

Example: >13K species of S S
plants analyzed for one gene. /i ‘

Figure 3

[ for 13,533 species of green plants based on rbcL DNA sequences. The data matrix
was constructed using the mega-phylogeny method; major clades are labeled and denoted with a star.
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Large-scale phylogenetics
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e Dated megaphylogenies:

e Bayesian relaxed clock R\
analysis on a reduced set of =
taxa to infer the backbone. =
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then added to the backbone.

W Jetz et al. Nature 000, 1-5(2012) doi:10.1038/nature 1168



Large-scale phylogenetics

e National Science Foundation initiatives to support Assembling
the Tree of Life programs starting in early 2000s.

Assembling the fungal tree of life: progress,
classification, and evolution of subcellular
traits*

Plant scientists plan massive effort to
sequence 10,000 genomes

Genome 10K is a project to sequence the genome of at least one individual from
each vertebrate genus, approximately 10,000 genomes. It is a key milestone on
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Large-scale phylogenetics

Open Tree of Life.
Compilation of all published
phylogenetic knowledge.
Uses a taxonomy (groups
within groups) to stitch trees
together where information is
missing. el g eebe kel ek s 3 ez e
Stores conflict among R

different published studies as

a network.
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Large-scale phylogenetics

e However, some groups are
difficult to characterize as
‘species’, and therefore to
confirm sampling.

e Most data does not end up in

d ata b a S eS Fig. 1. Phylogenies representing the synthetic tree. The depicted tree is limited to lineages containing at least 500 descendants. (A) Colors represent pro-
portion of lineages rep d in NCBI datak (B) Colors repi the amount of diversity measured by number of descendant tips. (C) Dark lineages
have at least one representative in an input source tree.

e Manual curation and ranking
remains necessary.
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Summary of large-scale phylogenetics

Supermatrix approaches combine huge numbers of taxa for few or many
genes. Often sparse matrices (missing data). Made possible by
algorithmic and computational improvements to likelihood calculations.

Supertree methods aim to combine information from multiple trees
without the need to infer the actual sequence data for all samples at
once.

At the largest scale, both approaches are typically combined to stitch

together the tree of life with both known (inferred) relationships, and
estimated (taxonomy) relationships. A lot of work remains to be done!
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