Phylogenomic Perspectives on Reproductive Isolation and Introgression

Deren Eaton, Columbia University

Botany 2019, Tucson

- 1. Phylogenomic data generation
- 2. Species tree inference
- 3. Network/admixture inference
- 4. Reproductive isolation and phylogenomics
- 5. Advances on the horizon...

Quality reference genome assemblies are now generally obtainable.

Quality reference genome assemblies are now generally obtainable.

> Long read technologies (e.g., Oxford Nanopore)

Nanobind Plant Nuclei Big DNA Kit -Alpha Version SKU NB-900-801-01

\$400.00

Quality reference genome assemblies are now generally obtainable.

> Long range scaffolding technologies (e.g., Chicago, Hi-C)

Caveat: requires large(ish) quantities of (fresh/flash frozen) leaf tissue.

Caveat: requires large(ish) quantities of (fresh/flash frozen) leaf tissue.

- 1. Phylogenomic data generation
- 2. Species tree inference
- 3. Network/admixture inference
- 4. Reproductive isolation and phylogenomics
- 5. Advances on the horizon...

Coalescent variation

Coalescent variation

Advances in species tree inference

Joint gene tree & species tree inference (e.g., *BEAST, BPP)

Summary inference based on gene-tree inputs (e.g., ASTRAL)

Quartet joining with fast inference from SNPS (e.g., SVDQuartets)

- 1. Phylogenomic data generation
- 2. Species tree inference
- 3. Network/admixture inference
- 4. Reproductive isolation and phylogenomics
- 5. Advances on the horizon...

Coalescent variation within a network

Advances in network inference

Summary inference based on gene-tree inputs (e.g., Phylonet, SNAQ)

Joint gene tree & network inference (e.g., Phylonet, BEAST2)

Coalescent variation within a network

Coalescent variation within a network

Wen et al. (2016)

- 1. Phylogenomic data generation
- 2. Species tree inference
- 3. Network/admixture inference
- 4. Reproductive isolation and phylogenomics
- 5. Advances on the horizon...

Introgression in the context of biology

Are introgressive patterns concordant with reproductive traits, or geography?

Folk et al. (2018)

Introgression in the context of biology

Sliding windows can reveal interplay of introgression and selection

Martin et al. (2017)

- 1. Phylogenomic data generation
- 2. Species tree inference
- 3. Network/admixture inference
- 4. Reproductive isolation and phylogenomics
- 5. Advances on the horizon...

A disconnect between theory and practice

Sliding windows reveal genealogical variation; but what is our expectation?

Species tree/network models could provide a better null.

Martin et al. (2017)

Additional sources of information.

Recombination rate are correlated with retention of introgressed blocks

But such data are not readily available for many taxa...

Concluding

- > Increased availability of genome-wide comparative data
- > Hierarchical model inference (e.g., species trees/networks)
- > Spatial investigation (e.g., sliding windows)
- > Introgression in the context of biology (traits, geography, selection)
- > Combining spatial and hierarchical models

Phylogenomic Perspectives on Reproductive Isolation and Introgression

Paul Blischak

Patrick McKenzie

Deren Eaton

James Pease

Joanna Rifkin

Ryan Folk